
Invited Paper: Conditions for the Solvability of Fault-Tolerant Consensus
in Asynchronous Unknown Networks ∗

Fabı́ola Greve
Computer Science Department

Federal University of Bahia (UFBA), Brasil
fabiola@dcc.ufba.br

Sébastien Tixeuil
LIP6-CNRS & INRIA France

Université Pierre et Marie Curie
tixeuil@lip6.fr

Abstract

The consensus problem is at the heart of solutions re-
lated to the development of modern reliable distributed sys-
tems. This paper studies necessary and sufficient conditions
under which fault-tolerant consensus become solvable in
dynamic systems and self-organizing networks. Those con-
ditions are related to the synchrony requirements of the en-
vironment, to the connectivity of the knowledge graph con-
structed by the nodes in order to communicate with their
peers, as well as to the knowledge about global parameters
in the system, such as, the total number of participants and
the maximum number of node crashes.

1 Introduction

Searching for the principles of how to master the uncer-
tainties of dynamic networks, such as, wireless sensor, ad
hoc and unstructured peer to peer networks, is a primary
concern in order to design reliable and effective modern dis-
tributed systems. Dynamic networks define a new model of
distributed systems, which has essential differences regard-
ing the classical one, since only a partial knowledge of the
system composition can be retained and the communication
graph is not complete. Thus, it brings new challenges to the
specification and resolution of fundamental problems.

Consensus is the most fundamental problem in reliable
distributed computing [3]. Informally, a group of processes
achieves consensus when those, who did not crash, reach
a common decision on some value that has been proposed
before. In traditional networks, when entities behave asyn-
chronously, consensus cannot be solved, even if one of the
participants is allowed to crash [5]. Failure detector and
leader oracles are elegant abstractions which encapsulate
the extra synchrony necessary to circumvent this impossi-

∗Fabı́ola’s research is supported by grants from CAPES and CNPQ,
Brasil. Sébastien’s research is supported by ANR grant SHAMAN.

bility [3]. Nonetheless, extra synchrony is not sufficient to
solve consensus in dynamic networks. Beyond synchrony,
some level of knowledge connectivity about participants in
the system is required.

This paper studies the conditions to solve consensus in
a dynamic system of unknown participants, subject to pro-
cess crashes. In the classic model of distributed comput-
ing, global parameters are previous known and easily de-
termined, such as the whole system composition (Π), the
number of entities (n), and the maximum number of faults
(f). In a dynamic system, Π and n are considered unknown,
but since entities must cooperate somehow, some degree
of knowledge regarding participants is expected. The par-
ticipant detector abstraction was proposed to handle this
knowledge [1]. It provides processes an initial knowledge
connectivity graph Gdi of the system composition. One can
define necessary and sufficient connectivity conditions of
Gdi able to solve fault-tolerant consensus with unknown
participants, namely FT-CUP. Roughly, to solve FT-CUP
the Gdi constructed preliminarily by the processes in an
asynchronous system should have at most one sink com-
ponent, and this condition is necessary [1, 2, 6].

There is, indeed, a trade-off between knowledge connec-
tivity and synchrony for FT-CUP [6]. To solve FT-CUP
with the minimal requirements regarding knowledge con-
nectivity (the one sink component), it is necessary to enrich
the system with the strongest requirements regarding syn-
chrony (the perfect failure detector P) [2]. Taking into ac-
count the weakest synchrony conditions to solve consensus
(represented by the Ω and 3S failure detectors), FT-CUP
can be solved as soon as additional assumptions regarding
the knowledge connectivity (beyond the one sink require-
ment) are made [6]. This paper presents thus recent results
concerning these necessary and sufficient requirements.

The remaining of the paper is organized as follows: Sec-
tion 2 provides the model and problem statement; Section 3
describes abstractions to solve consensus; Section 4 and 5
presents necessary and sufficient conditions to solve FT-
CUP. Section 6 provides some concluding remarks.

2 Preliminaries

System Model. We consider a distributed system that
consists of a finite set Π of n > 1 processes, namely,
Π = {p1, . . . , pn}. In a known network, Π is known to
every participating process, while in an unknown network,
a process pi may only be aware of a subset Πi of Π. There
are no assumptions on the relative speed of processes or on
message transfer delays, i.e. the system is asynchronous.
Processes communicate by sending and receiving messages
through a reliable underlying routing layer, in such a way
that if pj ∈ Πi, then pi can send a message reliably to pj .
A process pi may only send a message to another process
pj if pj ∈ Πi. Of course, if a process pi sends a mes-
sage to a process pj such that pi 6∈ Πj , upon receipt of the
message, pj may add pi to Πj and send a message back to
pi. A process may fail by crashing, i.e., by prematurely or
by deliberately halting; a crashed process does not recover.
A process behaves correctly (i.e., according to its specifi-
cation) until it (possibly) crashes. By definition, a correct
process is a process that does not crash. A faulty process
is a process that is not correct. Let f denote the maximum
number of processes that may crash in the system.

Classical Consensus in Known Networks. In the con-
sensus problem, every process pi proposes a value vi and all
correct processes decide on some unique value v, in relation
to the set of proposed values. More precisely, the consensus
is defined by the following properties [3, 5]: (i) Termina-
tion: every correct process eventually decides some value;
(ii) Validity: if a process decides v, then v was proposed
by some process; (iii) Agreement: no two correct processes
decide differently.

Uniform Consensus refines the agreement property so
that it is satisfied by every process in the system (be it cor-
rect or not). So, it is changed for: (iii) Uniform Agreement:
no two processes (correct or not) decide differently.
CUP (Consensus with Unknown Participants). The
goal is to solve consensus in an unknown network, where
processes may not crash;
FT-CUP (Fault-Tolerant CUP). The goal is to solve
consensus in an unknown network, where up to f processes
may crash.

3 Synchrony and Knowledge Connectivity
for Consensus in Fault-Prone Systems

3.1 Failure Detector: a Synchrony Ab-
straction

A fundamental result [5] states that even if Π is known to
all processes and the number of faulty processes is bounded

by 1, consensus cannot be solved by a deterministic algo-
rithm in an asynchronous system. To enable solutions, some
level of synchrony must be assumed. A nice abstraction to
model network synchrony is the failure detector [3]. A fail-
ure detector (denoted by FD) can be seen as an oracle that
provides hints on crashed processes. Failure detectors can
be classified according to the properties (completeness and
accuracy) they satisfy. Two classes of failure detectors are
of special interest: P and 3S, because they represent, in re-
spective, the strongest and the weakest conditions to solve
the problem [4].

Perfect FD (P). They never make mistakes. They sat-
isfy the perpetual strong accuracy, stating that no process
is suspected before it crashes, and the strong completeness
property, stating that eventually, every process that crashes
is permanently suspected by every correct process.

Eventually Strong FD (3S). They can make an arbi-
trary number of mistakes. Yet, there is a time after which
some correct process is never suspected (eventual weak ac-
curacy). Moreover, they satisfy the strong completeness
property.

Leader Detector (Ω). Another approach for encapsu-
lating eventual synchrony consists of extending the system
with a leader detector, which is an oracle that eventually
provides the same correct process identity to all processes.

It has been proved that 3S and Ω have the same compu-
tational power and that they are the weakest class of detec-
tors allowing to solve the consensus and the uniform con-
sensus problem in a system of known networks [4]. Relying
on 3S and Ω failure detectors to solve agreement problems
assumes that a majority of processes within the group never
fails, i.e., f < n/2.

3.2 Participant Detectors: a Knowledge
Connectivity Abstraction

Participant detectors (denoted by PD) are distributed or-
acles that provide information about which processes par-
ticipate to the system [1]. They can be implemented, for
example, with the use of the local broadcast facility of wire-
less networks to identify the neighborhood.

We denote by i.PD the participant detector of process pi.
When queried by pi, i.PD returns a subset of processes in
Π. The information provided by i.PD can evolve between
queries. Let i.PD(t) be the query of process pi at time t.
This query must satisfy the two following properties:
• Information Inclusion. The information returned by

the participant detector is non-decreasing over time. pi ∈
Π, t′ ≥ t : i.PD(t) ∈ i.PD(t′)
• Information Accuracy. The participant detector does

not make mistakes. ∀pi ∈ Π,∀t : i.PD(t) ∈ Π
The PD abstraction enriches the system with a knowl-

edge connectivity graph. This graph is directed since

knowledge that is given by participation detectors is not
necessarily bidirectional (i.e. if pj ∈ i.PD, then pi ∈ j.PD
does not necessarily hold).

Definition 1 (Knowledge Connectivity Graph) Let
Gdi = (V,E) be the directed graph representing the
knowledge relation determined by the PD oracle. Then,
V = Π and (pi, pj) ∈ E if and only if pj ∈ i.PD , i.e., pi

knows pj .

Definition 2 (Undirected Knowledge Connectivity Graph)
Let G = (V,E) be the undirected graph representing the
knowledge relation determined by PD. Then, V = Π and
(pi, pj) ∈ E if and only if pj ∈ i.PD or pi ∈ j.PD .

Based on the induced knowledge connectivity graph (ei-
ther Gdi or G), several classes of participant detectors were
proposed in [1, 6, 7]:

Connectivity PD (CO). The undirected graph G in-
duced by the PD oracle is connected.

Strong Connectivity PD (SCO). The graph Gdi in-
duced by the PD oracle is strongly connected.

One Sink Reducibility PD (OSR). The graph Gdi in-
duced by the PD oracle satisfies the following conditions:
1. the undirected graph G obtained from Gdi is connected;
2. the directed acyclic graph obtained by reducing Gdi to its
strongly connected components has exactly one sink.

k-Connectivity PD (k-CO). The undirected graph G
induced by the PD oracle is k-connected.

k-Strong Connectivity PD (k-SCO). The graph Gdi

induced by the PD oracle is k-strongly connected.
k-One Sink Reducibility PD (k-OSR). The graph Gdi

induced by the PD satisfies the following conditions:
1. the undirected graph G obtained from Gdi is connected;
2. the directed acyclic graph obtained by reducing Gdi to
its strongly connected components has exactly one sink:
Gsink;
3. the sink component Gsink is k-strongly connected;
4. for each pi, pj , such that pi 6∈ Gsink and pj ∈ Gsink,
then there are k-node-disjoint paths from pi to pj .

In [1], the CUP problem is investigated in fault free net-
works, and it is shown that (i) the CO participant detector
is necessary to solve CUP, (ii) the SCO participant detec-
tor is sufficient to solve CUP, and (iii) the OSR participant
detector is both necessary and sufficient to solve CUP. In
the next sections, we present necessary and sufficient con-
ditions able to solve FT-CUP in fault-prone networks.

4 Sufficient Conditions to Solve FT-CUP

In this section, we enumerate sufficient conditions able
to solve FT-CUP. These are related not only to the level of
synchrony and knowledge connectivity, but also with the
knowledge about global parameters in the system, that is, n
and f .

4.1 Rationale behind the algorithms to
solve FT-CUP

In the beginning of the execution, to obtain an ini-
tial view of the system composition, each process pi first
queries its participant detector i.PD. The participant de-
tector is queried exactly once by each pi to ensure that the
partial snapshot about the initial knowledge connectivity is
consistent for all nodes in the system. This snapshot defines
the common knowledge connectivity graph Gdi = (V,E).
Let Gsink = (Vsink, Esink) be the sink component of Gdi.

In the solutions proposed to solve FT-CUP, a sequence of
protocols is executed by each pi with the following objec-
tives: (1) enlarge the knowledge about systems participants,
beyond the information returned by i.PD; (2) differentiate
processes in Gdi and identify those who can decide, that is,
those who are in the sink Gsink. This is because nodes in
Gsink cannot reach the nodes in the other components, but
all the other nodes in Gdi can reach the nodes in Gsink. (3)
execute a consensus to decide for a value.

4.2 Solving FT-CUP when n is known and
f is known

When the number n of participants is known, each pro-
cess can run an algorithm to gather the “full” system com-
position Π. Moreover, this discovery algorithm can be
purely asynchronous, and there is no need to make use of
a failure detector oracle to ensure progress. Let us show
a sequence of algorithms [7] sufficient to solve FT-CUP:
GATHER and CONSENSUS.
• Algorithm 1: GATHER – Provides nodes a “complete”

view of the system participants in Gdi.
Description: Each process pi first queries i.PD to ob-

tain the initial view of the system which is stored in Πi.
Afterwards, pi iteratively requests newly known processes
in Gdi to get knowledge improvement about the network,
until a global knowledge about the system composition is
acquired. Thus, pi sends to processes in Πi its actual view.
When, for its turn, pi receives the view Πj from pj , it (i)
sends to newly known processes (Πj \ Πi) its actual view
and (ii) updates its own view with Πj (Πi = Πi ∪Πj). Ter-
mination: The prospection in the graph terminates when all
processes in Gdi are discovered, that is, |Πi| = n. Algo-
rithm thus returns the global system composition Πi = V .
• Algorithm 2: CONSENSUS – Decides for a value.
Description: By construction, after the execution of

GATHER, all correct nodes pi in Gdi share the same Πi set,
thus they all know each other and can run any classical un-
derlying consensus, with the aid of a failure detector.

Lemma 1 Consider a k-CO participant detector. Let f <
k < n be the number of nodes that may crash. Algorithm

GATHER satisfies the following properties :
• Termination: Every correct node pi ends execution;
• Safety: Every correct node pi returns a set Πi of pro-

cesses in Gdi, such that Πi = V .

Sketch of proof: Since n is known, if pi is a correct node,
it will enrich its view Πi with other processes view until
|Πi| = n. From the characteristics of k-CO, Gdi is k-
connected and its minimum degree in is k, thus every pro-
cess pj ∈ Gdi (either correct or faulty after the graph for-
mation) will belong to at least k different view sets returned
by the PD. Since, at most f < k nodes can crash, then there
is at least one correct process pl which will have pj ∈ Πl.
Moreover, in spite of f crashes, process pi will reach pl

to gather its view and, in consequence, to know pj and the
lemma follows. 2

Proposition 1 The k-CO participant detector and the Ω
failure detector are sufficient to solve uniform FT-CUP,
when n and f are known, in spite of f < k < n node
crashes.

Sketch of proof: Algorithm GATHER provides each pro-
cess pi with the same set Π (Lemma 1). Then, previous
indulgent algorithms aiming for solving classical consen-
sus, which are based on a priori knowledge about Π, can be
used [3]. In particular, if f < n/2, and k < n, it is possi-
ble to solve FT-CUP as well uniform FT-CUP in a system
enriched with both: a k-OSR PD and a Ω FD. 2

4.3 Solving FT-CUP when n is unknown
but f is known

When n is unknown and f is known, processes will be
able to gather only a “partial” knowledge about the sys-
tem composition Π. The discovery algorithm can be purely
asynchronous, and there is no need to make use of a failure
detector. But, since the view knowledge is partial, it will be
necessary to differentiate processes in Gdi in order to iden-
tify those who can decide, that is, those who are in Gsink.
Let us show a sequence of algorithms [6, 7] sufficient to
solve FT-CUP: COLLECT, SINK and CONSENSUS.
• Algorithm 1: COLLECT – Provides nodes a “partial”

view of the system participants in Gdi.
Description: Each process pi first queries i.PD to obtain

the initial view of the system which is stored in Πi. Af-
terwards, pi iteratively requests newly known processes in
Gdi to get knowledge improvement about the network, un-
til no further knowledge can be acquired. Thus, pi realizes
an asynchronous prospection in Gdi to identify reachable
processes. At the beginning, pi inquiries every neighbor
pj ∈ Πi for its actual view Πj . As soon as new processes
are discovered, that is Πj\Πi 6= ∅, then pi (i) inquiries these
new discovered processes belonging to Πj \ Πi for their

view and (ii) augments its view, such that Πi = Πi ∪ Πj .
Termination: The prospection in the graph terminates when
a sufficient number of responses r is received from inquired
processes, that is r ≥ |Πi| − f . Algorithm thus returns the
partial knowledge Πi ⊆ V gathered by pi.
• Algorithm 2: SINK – Differentiates processes in Gdi

and establishes who are in the sink component.
Description: Let Πi be the view returned by COLLECT.

Notice that every process pi ∈ Gsink has the same view
Πi = Vsink of the system; whereas, in the other compo-
nents, every process pj 6∈ Gsink has strictly more knowl-
edge than pi, and additionally, pj knows the nodes in the
sink, that is Πi ⊂ Πj . In that sense, the algorithm is com-
posed of two phases. In an INITIAL PHASE, pi asks ev-
ery node pj ∈ Πi if it belongs to their view, that is, if
pi ∈ Πj . In a VERIFICATION PHASE, according to the re-
sponses from every pj , pi determines if it belongs to the
sink. Thus, pi 6∈ Gsink if a negative response is received
from pj ; otherwise, pi ∈ Gsink if all the responses received
are positive. Termination: Algorithm returns no, if at least
one negative response is received; otherwise, it returns yes
if at least r ≥ |Πi| − f responses are received.
• Algorithm 3: CONSENSUS – Decides for a value.
Description: After the execution of SINK, depending on

whether pi belongs or not to the sink, two behaviors are
possible. For every pi ∈ Gsink, an AGREEMENT PHASE
is launched in order to reach a consensus on some value.
By construction, all nodes in Gsink share the same Π set,
thus they all known each other and can run a classical un-
derlying consensus to achieve a decision. The other nodes
pj 6∈ Gsink do not participate to this underlying consensus.
They launch a REQUEST PHASE to ask for and collect the
value decided by the sink members. This is done by sending
request messages to known processes in Πj , and waiting for
one response. Termination: The algorithm ends up when a
value is decided from the underlying consensus and all pro-
cesses in Gdi receives this value.

Lemma 2 Consider a k-OSR participant detector. Algo-
rithm COLLECT satisfies the following properties :
• Termination: Every correct node pi terminates execu-

tion and returns a list Πi of known nodes;
• Safety: COLLECT executed by a process pi returns a

set Πi of processes reachable from pi, (i) if pi ∈ Gsink, then
Πi = Vsink. (ii) if pi 6∈ Gsink, then Πi ⊃ Vsink.

Proposition 2 The k-SCO participant detector and the Ω
failure detector are sufficient to solve uniform FT-CUP,
when f is known, in spite of f < k < n node crashes.

Sketch of proof: If PD ∈ k-SCO, there is exactly one
k-strongly connected component in Gdi. Thus, COLLECT
provides each process pi with the set Π (from Lemma 2),
in spite of f < k crashes. Then, similarly to Proposition 1,

previous indulgent algorithms aiming for solving classical
consensus when Π is known can be used [3]. 2

Lemma 3 Consider a k-OSR participant detector. Algo-
rithm SINK satisfies the following properties:
• Termination: Every correct node pi ends execution and

decides whether it belongs to Gsink;
• Safety: A node pi is in the unique sink component

Gsink iff algorithm SINK returns true.

Proposition 3 The k-OSR participant detector and the Ω
failure detector are sufficient to solve uniform FT-CUP,
when f is known, in spite of f < k < n node crashes,
assuming at least 2f + 1 correct nodes in Gsink.

Sketch of proof: Te execution of COLLECT and SINK es-
tablishes which processes are in Gsink (Lemma 3). Then,
on the execution of CONSENSUS, every process pi ∈
Gsink can run an indulgent underlying consensus, as soon
as at least 2f + 1 processes are correct and the system is
extended with an Ω failure detector [3]. Thus, for every
pi ∈ Gsink, properties Validity, Termination and Uniform
Agreement come trivially from the underlying consensus
properties [3]. The other processes pj 6∈ Gsink will ask
for and eventually receive the decision, as soon it is taken
by the nodes in Gsink, since moreover, there is at least one
correct process in Gsink. 2

4.4 Solving FT-CUP when n is unknown
and f is unknown

When n is unknown and moreover f is unknown, to dis-
cover processes in Gdi, in order to ensure progress, it will be
necessary to enrich the system with a failure detector. Addi-
tionally, the information given by this FD should be reliable,
otherwise, a process unduly suspected of being faulty is not
going to be heard by the others and its view is not going
to be considered. In consequence, the partial view gathered
by processes will be inconsistent and the perception of the
knowledge connectivity graph may diverge, compromising
the safety properties of FT-CUP.

A sequence of algorithms able to solve FT-CUP, when
f and n are unknown, is presented in [2]. It assumes an
OSR participant detector and a perfect P failure detector.
Moreover, it assumes a safe crash pattern, which imposes a
restriction on the set of processes defined by both the par-
ticipant and failure detectors.

Definition 3 (Safe Crash Pattern) Let Gdi be the common
knowledge connectivity graph formed by processes in the
system on their first invocation to PD. Let P.suspect be the
list of suspected processes returned by the perfect failure
detector P . The safe crashed pattern is the set of processes
obtained from the combination of the information returned

by the PD and the FD, and such that Gdi \ P.suspect ∈
OSR.

Proposition 4 The OSR participant detector and the per-
fect P failure detector are sufficient to solve FT-CUP, when
n and f are unknown, in spite of f < n node crashes, as-
suming the safe crashed pattern (Gdi \P.suspect ∈ OSR)
holds at any time.

Sketch of proof: The execution of a DISCOVERY al-
gorithm will enlarge the view of the processes and en-
sure that, at least all processes S in the sink component
Gsink which have not crashed during the execution, that
is, S = Gsink \ P.suspect, are going to be known by ev-
ery other process in Gdi. Then, the execution of a LEADER
ELECTION algorithm will chose a leader, among processes
in S, and this leader will finally impose its own value as the
decided value. If during the execution of the algorithms a
process crashes, the properties of P ensure that it will be
eventually suspected and then progress is ensured in a safe
manner. 2

5 Necessary Conditions to Solve FT-CUP

5.1 When the system is not equipped with
a failure detector

In this section, we depict the necessary conditions for
solving FT-CUP in an asynchronous system, subject to ar-
bitrary failures and extended only with a participant detec-
tor [6, 7, 1].

Proposition 5 The (f +1)-CO participant detector is nec-
essary to solve FT-CUP in an asynchronous unknown net-
work, in spite of f < n node crashes.

Sketch of proof: Assume by contradiction that the undi-
rected knowledge connectivity graph G defined by the PD
oracle is f -connected. But, the removal of f nodes may
disconnect this undirected graph G into at least two com-
ponents C1 and C2. Since nodes in C1 do not communi-
cate with C2, they can execute a consensus independently
in each component and may decide different values, violat-
ing agreement. 2

Proposition 6 The OSR participant detector is necessary
to solve FT-CUP in an asynchronous unknown network, in
spite of f < n node crashes.

Sketch of proof: Assume by contradiction that there is
an algorithm A which solves FT-CUP with a PD 6∈ OSR.
Suppose that the decomposition of Gdi to its strongly con-
nected components has more than one sink. Let G1 and G2

be two of those sinks. Assume that all nodes in G1 have

input value equal to v and that all nodes in G2 have input
value equal to w, v 6= w. By the termination property of
consensus, nodes in G1 decide at time t1 and nodes in G2

decide at time t2. We can delay the reception of any mes-
sages from nodes in other components to both G1 and G2

to a time t > max{t1, t2}. Since nodes in the sinks are
unaware about the existence of other nodes, by the validity
of consensus, nodes in G1 decide for the value v and nodes
in G2 decide for the value w, violating the agreement. 2

Proposition 7 The (f + 1)-OSR participant detector is
necessary to solve FT-CUP in an asynchronous unknown
network, in spite of f < n node crashes.

Sketch of proof: Assume by contradiction that there is an
algorithm A which solves FT-CUP with a PD 6∈ (f + 1)-
OSR. Suppose that (1) G obtained from Gdi is not con-
nected, or (2) the decomposition of Gdi has more than one
sink, or (3) the sink Gsink is not (f +1)-strongly connected
or (4) there are pi, pj , such that pi 6∈ Gsink and pj ∈ Gsink,
then there exists less than (f + 1)-node-disjoint paths from
pi to pj . In scenarios (1), (2) and (3) the occurrence of f
crashes may either disconnect the sink into at least two dis-
joint components or generate more than one sink. But, con-
nectivity of G and OSR are necessary conditions (Proposi-
tions 5 and 6). In scenario (4), from Proposition 6, decision
must be taken in the sink; otherwise, agreement is infringed.
Thus, if pi 6∈ Gsink, pi must wait from a decision coming
from a reachable pj ∈ Gsink, pi ; pj . But, the removal of
f nodes, may disconnect pi from pj , and the decision will
never arrive at pi, compromising termination. 2

5.2 When the system is equipped with a
failure detector

When the system is enriched with a failure detector or-
acle, it is possible to weaken the knowledge connectivity
conditions and the knowledge about f . But, the information
about failures should be reliable. As stated before, admit-
ting false suspicions may result in creating different percep-
tions of the knowledge connectivity graph and the violation
of FT-CUP properties [2].

Proposition 8 The following conditions: (1) OSR partic-
ipant detector, (2) P failure detector and (3) safe crash
pattern (Gdi \ P.suspect ∈ OSR) are necessary to solve
FT-CUP in an asynchronous unknown network, in spite of
f < n node crashes.

Sketch of proof: Let i.PD the view returned by the PD
of pi and i.suspect the list of suspects returned by the FD
associated to pi. Condition (1) follows from Proposition 6.
To prove Condition (2) assume, by contradiction, that the
FD does not satisfy the strong completeness property. Then,

there may be a crashed process pj , known by a correct pro-
cess pi, pj ∈ i.PD, but which is never suspected by pi,
pj 6∈ i.suspected. Suppose that Gsink = ({pj}, ∅). In this
case, to ensure agreement, pi should wait for pj’s response.
But, this response will never come, since pj is faulty. Thus,
termination is not ensured, reaching a contradiction. Now,
assume that the FD does not satisfy the strong accuracy
property. Then, correct processes are unduly suspected. Let
pi and pj be two correct processes, such that, pi ∈ j.PD
and pi ∈ j.suspect, pj ∈ i.PD and pj ∈ i.suspect. In this
case, the false suspicion can lead both processes to be parti-
tioned into two non-intersection sinks; one formed by {pi}
and another by {pj}. From Proposition 6, decision must be
taken in a unique sink component; otherwise, agreement is
infringed, reaching a contradiction. Condition (3) follows
from Condition (1) and Condition (2). 2

6 Conclusion

In this paper, we provide necessary and sufficient condi-
tions able to solve consensus in fault-prone unknown net-
works. These conditions are related to (i) the information
returned by the participant detector concerning the knowl-
edge connectivity formed by processes in the system (ii) the
synchrony assumptions encapsulated by a failure detector;
(iii) the knowledge about global parameters: n and f .

References

[1] D. Cavin, Y. Sasson, and A. Schiper. Consensus with un-
known participants or fundamental self-organization. In
Proc. 3rd Int. Conf. AD-NOC Networks & Wireless (ADHOC-
NOW), pages 135–148, Vancouver, July 2004. Springer-
Verlag.

[2] D. Cavin, Y. Sasson, and A. Schiper. Reaching agreement
with unknown participants in mobile self-organized networks
in spite of process crashes. Research Report IC/2005/026,
EPFL, 2005.

[3] T. Chandra and S. Toueg. Unreliable failure detectors for reli-
able distributed systems. Journal of the ACM, 43(2):225–267,
Mar. 1996.

[4] T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest
failure detector for solving consensus. Journal of the ACM,
43(4):685–722, July 1996.

[5] M. J. Fischer, N. A. Lynch, and M. D. Paterson. Impossibility
of distributed consensus with one faulty process. Journal of
ACM, 32(2):374–382, Apr. 1985.

[6] F. Greve and S. Tixeuil. Knowledge Connectivity vs. Syn-
chrony Requirements for Fault-Tolerant Agreement in Un-
known Networks. In DSN ’07: Proceedings of the 37th
Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, pages 82–91, Washington, DC, USA,
2007. IEEE Computer Society.

[7] F. Greve and S. Tixeuil. Knowledge connectivity vs. syn-
chrony requirements for fault-tolerant agreement in unknown
networks. Technical report, INRIA, Paris, France, 2010.

