Purifying Data by Machine Learning with Certainty
Levels

(Extended Abstract)

Shlomi Dolev
Computer Science Department,
Ben Gurion University, Israel
Email: dolev@cs.bgu.ac.il

Abstract—A fundamental paradigm used for autonomic
computing, self-managing systems, and decision-making under
uncertainty and faults is machine learning. Machine learning
uses a data-set, or a set of data-items. A data-item is a vector
of feature values and a classification. Occasionally these data
sets include misleading data items that were either introduced
by input device malfunctions, or were maliciously inserted to
lead the machine learning to wrong conclusions. A reliable
learning algorithm must be able to handle a corrupted data-set.
Otherwise, an adversary (or simply a malfunctioning input
device that corrupts a portion of the data-set) may lead to
inaccurate classifications. Therefore, the challenge is to find
effective methods to evaluate and increase the certainty level of
the learning process as much as possible. This paper introduces
the use of a certainty level measure to obtain better classification
capability in the presence of corrupted data items. Assuming
a known data distribution (e.g., a normal distribution) and/or
a known upper bound on the given number of corrupted data
items, our techniques define a certainty level for classifications.
Another approach suggests enhancing the random forest
techniques to cope with corrupted data items by augmenting
the certainty level for the classification obtained in each leaf
in the forest. This method is of independent interest, that of
significantly improving the classification of the random forest
machine learning technique in less severe settings.

key words — Data corruption, PAC learning, Machine learning,
Certainty level

I. INTRODUCTION

Motivation. A fundamental paradigm used for autonomic
computing, self-managing systems, and decision-making un-
der uncertainty and faults is machine learning. Classification
of machine learning algorithms that are designed to deal with
Byzantine (or malicious) data are of great interest since a
realistic model of learning from examples should address the
issue of Byzantine data.

Acknowledgment

* Partially supported by ICT Programme of the European
Union under contract number ICT-2008-215270 (FRONTYS),
Vaatat, Rita Altura Trust Chair in Computer Sciences and
Lynne and William Frankel Center for Computer Sciences.

Guy Leshem
Computer Science Department,
Ben Gurion University
and Ashkelon Academic College, Israel
Email: leshemg@cs.bgu.ac.il

Reuven Yagel
Computer Science Department,
Ben Gurion University,
and Department of Software Engineering,
The Jerusalem College of Engineering, Israel
Email: yagel@cs.bgu.ac.il

Previous work, as described below, tried to cope with this issue
by developing new algorithms using a boosting algorithm (e.g.,
“AdaBoost”, “Logitboost” etc.) or other robust and efficient
learning algorithms e.g., (Servedio, 2003 [15]). These efficient
learning algorithms tolerate relatively high rates of corrupted
data. In this paper we try to handle the issue using a different
approach, that of introducing the certainty level measure as a
tool for coping with corrupted data items, and of combining
learning results in a new and unique way. We present two
new approaches to increase the certainty levels of machine
learning results by calculating a certainty level that takes into
account the corrupted data items in the training data-set file.
The first scheme is based on identifying statistical parameters
when the distribution is known (e.g., normal distribution)
and using an assumed bound on the number of corrupted
data items to bound the uncertainty in the classification. The
second scheme uses decision trees, similar to the random forest
techniques, incorporating the certainty level to the leaves.
The use of the certainty level measure in the leaves yields
a better collaborative classification when results from several
trees are combined to a final classification. One practical
example is in the scope of sensor networks, where the tiny and
computational limited sensors may act in unreliable fashion
transmitting wrong information over time. For example, a
sensor may be deployed up-side down and constantly transmit
misleading information.

Previous work. In the Probably Approximately Correct (PAC)
learning framework, Valiant (Valiant, 1984) introduced the
notion of PAC learning in the presence of malicious noise.
This is a worst-case model of errors in which some fraction
of the labeled examples given to a learning algorithm may
be corrupted by an adversary who can modify both example
points and labels in an arbitrary fashion. The frequency of such
corrupted examples is known as the malicious noise rate. This
study assumed that there is a fixed probability 8 (0 < 8 < 1)
of an error occurring independently on each request, but the
error is of an arbitrary nature. In particular, the error may
be chosen by an adversary with unbounded computational



resources and knowledge of the function being learned, the
probability distribution and the internal state of the learning
algorithm (note that in the standard PAC model the learner has
access to an oracle returning some labeled instance (x, C(x))for
each query, where C(x) is some fixed concept belonging to a
given target class C and x is a randomly chosen sample drawn
from a fixed distribution D over the domain X. Both C and
D are unknown to the learner and each randomly drawn x is
independent of the outcomes of the other draws.

In the malicious variant of the PAC model introduced by
Kearns and Li (1993), the oracle is allowed to “flip a coin’ for
each query with a fixed bias n for heads. If the outcome is
heads, the oracle returns some labeled instance (x,/) antago-
nistically chosen from X x {-1,+1}. If the outcome is tails, the
oracle is forced to behave exactly like in the standard model
returning the correctly labeled instance (x,C(x)) where x ~ D
(x is a drawn sample from the distribution D).

In both the standard and malicious PAC models the learner’s
goal for all inputs €, A > 0 is to output some hypothesis
H € H (where H is the learner’s fixed hypothesis class) by
querying an oracle at most m times for some m = m(e, A)
in the standard model, and for some m = m(e, A, n) in the
malicious model. For all targets C' € C and distributions D,
the hypothesis H of the learner must satisfy E,.p[H(x) #
C(z)] < € with a probability of at least 1 — A with respect to
the oracle’s randomization. We will call € and A the accuracy
and the confidence parameter, respectively. Kearns and Li
(1993) have also shown that for many classes of Boolean
functions (concept classes), it is impossible to accurately
learn ¢ if the malicious noise rate exceeds 5. In fact, for
many interesting concept classes, such as the class of linear
threshold functions, the most efficient algorithms known can
only tolerate malicious noise rates significantly lower than this
general upper bound.

Despite these difficulties, the importance of being able
to cope with noisy data has led many researchers to study
PAC learning in the presence of malicious noise (Aslam
and Decatur (1998) [1], Auer (1997) [2], Auer and Cesa-
Bianchi (1998) [3], Cesa-Bianchi et al. (1999) [7], Decatur
(1993) [8], Mansour and Parnas (1998) [11], Servedio (2003)
[15]. In Servedio (2003) [15], a PAC boosting algorithm
is developed using smooth distributions. This algorithm can
tolerate low malicious noise rates but requires access to a
noise-tolerant weak learning algorithm of known accuracy.
This weak learner, L, which takes as input a finite sample
S of m labeled examples, has some tolerance to malicious
noise; specifically, L is guaranteed to generate a hypothesis
with non-negligible advantage provided that the frequency of
noisy examples in its sample is at most 10% and that it has
a high probability to learn with high accuracy in the presence
of malicious noise at a rate of 1%.

Our contribution. We present a verifiable way to cope with
arbitrary faults introduced by even the most sophisticated ad-
versary, and show that the technique withstands this malicious
(called Byzantine) intervention so that even in the worst case

scenario the desired results of the machine learning algorithm
can be achieved. The assumption is that an unknown part
of a data-set is Byzantine, namely, introduced to mislead the
machine learning algorithm as much as possible. Our goal is to
show that we can ignore/filter the influence of the misleading
portions of the malicious data-set and obtain meaningful
(machine learning) results. In reality, the Byzantine portion
in the data-set may be introduced by a malfunctioning device
with no adversarial agenda, nevertheless, a technique proven
to cope with the Byzantine data items will also cope with less
severe cases. In this paper, we develop three new approaches
for increasing the certainty level of the learning process, where
the first two approaches identify and/or filter data items that
are suspected to be Byzantine data items in the data-set (e.g.,
a training file). In the third approach we introduce the use of
the certainty level for combining machine learning techniques
(similar to the previous studies).

The first approach fits best the case in which the Byzantine
data is added to the data-set, and is based on the calculation
of the statistical parameters of the data-set. The second
approach considers the case where part of the data is
Byzantine, and extends the use of the certainty level for those
cases in which no concentrations of outliers are identified.
Data-sets often have several features (or attributes) which are
actually columns in the training and test files that are used
for cross-checks and better prediction of the outcome in both
simple and sophisticated scenarios. The third approach deals
with cases in which the Byzantine data is part of the data and
appear in two possible modes: where part of the data in a
feature is Byzantine and/or where several features are entirely
Byzantine. The third technique is based on decision trees
similar to the Random Forest algorithm (Breiman, 1999 [5]).
After the decision trees are created from the training data,
each variable from the training data passes through these
decision trees, and whenever the variable arrives to a tree leaf,
its tree classification is compared with its class. When the
classification and the class are in agreement, a right variable
of the leaf is incremented; otherwise, the value of a wrong
variable of this leaf is incremented. The final classification
for every variable will be determined according to the right
and wrong values. This enhancement of the random forest
is of an independent interest conceptually and practically,
improving the well known random forest technique.

Road map. The rest of the paper is organized as follows:
In the next section (Section 2), we describe approaches for
those cases in which Byzantine data items are added to the
data-set, and the ways to identify statistical parameters when
the distribution of a feature is known. In Sections 3 and 4, we
present those cases in which the Byzantine adversary receives
the data-set and chooses which items to add/corrupt. Section
3 describes ways to cope with Byzantine data in the case of a
single feature with a classification of a given certainty level.
Section 4 extends the use of the certainty level to handle
several features, extending and improving the random forest
techniques. The conclusion appears in Section 5. Experiment



results are omitted from this extended abstract and can be
found in [9].

II. ADDITION OF BYZANTINE DATA

We start with the cases in which Byzantine data is added to
the data-set. Our goal is to calculate the statistical parameters
of the data-set, such as the distribution parameters of the
uncorrupted items in the data-set, despite the addition of
the Byzantine data. Consider the next examples that derive
the learning algorithm to the wrong classification, where
the raw data contains one feature (or attribute) of the
samples (1 vector) that obeys some distribution (e.g., normal
distribution), plus additional adversary data. The histogram
that describes such an addition is presented on the left side of
Figure 1, where the “clean” samples are inside the curve and
the addition of corrupted data is outside the curve (marked in
blue). The corrupted data items in these examples are defined

Normal curve lot Nornalcurve plot

Label Label
003 +H -1
Label
Byzaufine ]
O o

%7 Byzuine
data |

Byzantine
dits #1

Values of samples: Values of samples.

Fig. 1. Histogram of original samples with additional corrupted data outside
the normal curve but in the bound of p 4+ 30 (left), and outside the normal
curve and outside the bound of p & 30 (right).

as samples that cause miscalculation of statistical parameters
like i+ and o and as a result, the statistical variables are less
significant. Another case of misleading data added to the
data-set, a special case to the one above, is demonstrated on
the right side of Figure 1. The histogram of these samples
is marked in green, where the black vertical line that crosses
the histogram separates samples with labels +1 and —1. The
labels of the misleading data are inverted with relation to the
labels of other data items with the same value. To achieve
our goal to calculate the most accurate statistical parameters
for the feature’s distribution in the sample population, we
describe a general method to identify and filter the histograms
that may include a significant number of additional corrupted
data items.

Method for Identifying Suspicious Data and Reducing the
Influence of Byzantine Data. This first approach is based
on the assumption that we can separate “clean” data by a
procedure based on the calculation of the p» and o parameters
of the uncorrupted data. According to the central limited
theorem, 30 data items chosen uniformly, which we call a
batch, can be used to define the x and o. Thus, the first step
is to try to find at least 30 clean samples (with no Byzantine

data). Note that according to the central limit theorem, the
larger the set of samples, the closer the distribution is to
being normal, therefore, one may choose to select more than
30 samples. We use n=30 as a cutoff point and assume that
the sampling distribution is approximately normal. In the
presence of Byzantine data one should try to ensure that the
set of 30 samples will not include any Byzantine items. This
case is similar to the case of a shipment of N objects (real
data) in which m are defective (Byzantine). In probability
theory and statistics, hypergeometric distribution describes
the probability that in a sample of n distinctive objects drawn
from the shipment, exactly k objects are defective. The
probability for selecting k items that are not Byzantine is:

(%) (=t)
()

Note that for clean samples k=0 and the equation will be

()

In order to prevent the influence of the adversary on the
estimation of p and o (by addition of Byzantine data), we
require that the probability in equation 2 will be higher than
50% (P > %). Additionally, according to the Chernoff bound
we will obtain a lower bound for the success probability of
the majority of n independent choices of 30-sample batches
(thus, by a small number of batch samplings we will obtain a
good estimation for the ;1 and o parameters of clean batches).
The ratio between N (all samples) to m (Byzantine samples)
that implies a probability to sample a clean batch that is
greater than % is presented in Figure 2:

P(X=k) = (1)

P(X=0) =

3000

2500

2000 /
1500 /
/‘/

1000 /
/

o 10 20 30 40 &0 60

all samples (N)

o
=)
=

Byzantine samples (m)

Fig. 2. Ratio between N (all samples) to m (Byzantine samples) for P > %

As demonstrated in Figure 2 the ratio between N (all
samples), and m (Byzantine samples) is about 2% (e.g.,
20 Byzantine samples for every 1000 samples, so if this
Byzantine ratio is found by the new method (as described
below) the probability that any other column in the data-set
will contain a Byzantine sample is very low (in other words,
the confidence that in every other column the samples
are “clean” is high)). Our goal is to sample a majority of



“clean” batches to estimate statistical parameters such as u
and o of the non-Byzantine samples in the data-set. The
estimation of these parameters will be done according to
an Algorithm 1, presently in the full version of this paper [9].

Using Expected Value and Variance to Predict Distribution
Shape. Up to this stage, we used the central limit Theorem
(CLT), stating that: the average samples of observations
uniformly drawn from some population with any distribution
shape is approximately distributed as a normal distribution,
resulting in the expected value and the variance. Based on
CLT, we were able to efficiently obtain (using Chernoff
bound) the expected value and the variance of the data item
values. Next, for every given number of data items, and type
of distribution graph, the parameters of the graph that will
respect these values (expected value, variance, distribution
type, and number of data items) can be found. In the sequel,
we consider the case of a distribution type of graph which
reflects the normal distribution. The next stage for identifying
suspicious data items is based on analysis of the overflow
of data items beyond the distribution curve (Figure 1). The
statistical parameters which were found in the previous stage
are used in the procedure described in Algorithm 2, presently
in the full version of this paper [9].

The suspicious bins, those with a significant overflow,
are marked and will not be considered for the training process
of the machine learning. The data-set after the cleaning
process contains values from bins (in the data histogram)
without overflow (e.g., the ratio between the integral of
the normal curve to the data items in the same bin is
approximately 1). Note that when the number of extra data
items in the bins (which was counted during the “cleaning”
process) with overflow (data items outside the integral curve)
is higher than 2% of the whole data-set, we can assume that
the other bins are clean. The next section deals with the
remaining uncertainty.

III. CORRUPTION OF EXISTING DATA, SINGLE FEATURE
LEARNING WITH A CERTAINTY LEVEL

We continue considering the case where part of the data
in the feature is corrupted. Our goal in this section is to find
the certainty level of every sample in the distribution in the
case where the upper bound on a number of corrupted data
items is known. This section is actually a continuation of the
previous, as both sections deal with a single feature, where
the first deals with an attempt to find overflow of samples and
the second, cope with unsuccessful such attempts; either due
to the fact that the distribution is not known in advance, or
that no overflows are found. The histogram of these samples
is colored green, where the black vertical line that crosses
the histogram separates samples with labels +1 and —1.
The labels of the Byzantine data have an inverted label with
relation to the label of the non-Byzantine data items with
the same value. To achieve our goal we describe a general
method that bounds the influence of the Byzantine data items.

Method to Bound the Influence of the Byzantine
Data Items. The new approach is based on the assumption
that an upper £ on the number of Byzantine data items that
may exist in every bin in the distribution is known (e.g.,
maximum & equals 8 items). The certainty level ¢ of each
bin is calculated by the following equations:

(=t 3)
(= =5t @)

Where L_; is the number of data items that are labeled as
—1, Ly, is the number of data items that are labeled as +1,
and N is the number of data items in the bin.

Algorithm 3 Finding the Certainty Level

1) Take the original sample of size n from the population
of interest (e.g., one feature from the data set),

2) Sort the n data items (samples) according to their value
and create their histogram,

3) Count data items at every bin, where the size of bin
is the value of natural number in the histogram + 0.5
(e.g., for the natural number 73, the bin is between 72.5
to 73.5) and count the number of data items that are
labeled as —1 and +1.

4) Find the certainty level ( of each bin according to
equations 3 and 4, and the assumption of the size of
the maximum &.

Algorithm 3: Description of the method for finding the cer-
tainty level of every sample for £ Byzantine data items in
every bin in the distribution.

IV. CORRUPTION OF EXISTING DATA, MULTI-FEATURE
LEARNING (WITH A NEW DECISION TREES ALGORITHM)

Our last contribution deals with the general cases in which
corrupted data are part of the data-set and can appear in
two modes: (i) An entire feature is corrupted (Figure 3),
and (if) Part of the features in the data-set is corrupted and
the other part is clean. Note that there are several ways
to corrupt an entire feature, including: (1) inverting the
classification of data items, (2) selection of random data
items, and (3) producing classifications inconsistent with
the classifications of other non-corrupted features. Our goal,
once again, is to identify and to filter data items that are
suspected to be corrupted. The first case (i) is demonstrated
by Figure 3, where the raw data items contain one feature
and one vector of labels, where part of the features are
totally non-corrupted and part are suspected to be corrupted
(for all samples in this column there is a wrong classification).

Method to Bound the Influence of the Corrupted
Data Items. Our technique is based on the Random Forest;
like the Random Forest algorithm (Breiman, 1999 [5]) we
use decision trees, where each decision tree that is created
depends on the value of a random vector that represents
a set of random columns chosen from the training data.



Normal curve plot

D = Label
+1

i

Probability
©
3

[ Corrupted

data =1 Corrupted

data +1

Values of samples

Fig. 3. Histogram of original samples with corrupted data inside the normal
curve.

Large numbers of trees are generated to create a Random
Forest. After this forest is created, each instance from
the training data set passes through these decision trees.
Whenever a data set instances arrives to a tree leaf, its tree
classification is compared with its class (+1 or —1); when
the classification and the class agree the right instance of the
leaf is incremented; otherwise the value of the wrong instance
of this leaf is incremented, e.g., 351 instances were classified
by Node 5 (leaf): 348 with the right classification and 3 with
the wrong classification (Figure 4).

Certainty Adjustment Due to Byzantine Data Bound.
The certainty level ¢ of each leaf can be calculated based
on the assumption that the upper bound on the number of
corrupted data items £ at every leaf in the tree is known.
These calculations are arrived at using equations 3 and 4,
where, L_; is the number of variables (in the leaf) that are
labeled as —1, L4; is the number of instances (in the leaf)
that are labeled as +1, and N is the total number of variables
that were classified by the leaf.

In the second step, each instance from the test data set passes
through these decision trees to get its classification. Each new
tested instance will get a classification result and a confidence
level, where the confidence level is in the terms of the
(training) right and wrong numbers associated with the leaf
in the tree. The final classification is a function of the vector
of tuples (classification;right;wrong;) with reference
to a certainty level rather than a function of the vector of
(classification) which is used in the original Random
Forest technique. In this study we show one possibility for
using the vector of (classification;right;wrong;), though
other functions can be used as well to improve the final
classification.

Algorithm 4 Identify and Filter Byzantine Data
1) First, select the number of trees to be generated, e.g. K,
2) For k=1 to K do
3) A vector 6 is generated, where 6 represents the data
samples selected for creating the tree (e.g., random

Mode 5 (leaf) 25
Class: -1 v
fight: 348

L 925 A3 < A4 Node 18 (lsaf)
s R = & Class: +1
LG W51 LecrZ <665 B < 985 Zuhene
= fromg:

L. BoxT <93 L =415 o = T
Node & (leaf) ST <075 2097 = 1195 LE¥2 < 85
Class: =1 &

T A A
Hrong : £0<515 Aud @51 Auxg <99
Node 8 (leaf) B8 < A5 5
Class: +1 & + s
i A6 < 95 Node 31 (leaf}
Hrang:2 = Class: -
A3 <1085 Baxd <75 mi‘
259 <875 e #4778 Nodle 30 {leaf)
= Class: +1
2 Pight- 2
. x4 <665 8 s
[52 <985 23 < 78
X3 <w01 £5x1 <985
3 #6525 A2 <98

L. A7 =035

Sl

Fig. 4. Example of a decision tree for predicting the response for the instances
in every leaf with right or wrong classification.

columns chosen from training data sets - these columns
are usually selected iteratively from the set of columns,
with replacement between iterations),

4) Construct tree T'(0,y) by using the decision tree algo-
rithm,

5) End for

6) Each instance from the training data passes through
these decision trees, and for every leaf the number
of instances that are classified correctly (right) and
incorrectly (wrong) are counted, then the percentages
of right and wrong classifications are calculated,

7) Each instance from the test data set passes through these
decision trees and receives a classification,

8) Each new instance will receive a result
(classi fication; right;wrong;) from trees in the
forest, right and wrong percentages from all the trees
are summarized (e.g., sample 10 is classified by Tree
No. 1 at Node 5 as +1 with 90% (or 0.9) correctness
and 10% (or 0.1) incorrectness, by Tree No. 2 at Node
12 as +1 with 94% (or 0.94) correctness and 6% (or
0.06) incorrectness, where the total correctness of +1
for this sample from both trees is 92% (or 0.92) and
8% (or 0.08) for —1). The final classification for each
instance will be determined according to the difference
between the total correctness (right classifications) for
+1 to the total incorrectness (wrong classifications) for
+1 that are summarized from all trees*.

* This is one option for using the right and wrong
counters to determine the classification.
Algorithm 4: Description of the method for identifying and
filtering Byzantine data for multi-feature data-sets.

We tune down the certainty in each leaf using a given bound
on the corrupted/Byzantine data items. The contribution of
this part includes a conceptual improvement of the well
known random forest technique; by re-examining all data



items in the data set. The re-examination counts the number
of right and wrong classifications in each leaf of the tree.

V. CONCLUSION AND FUTURE WORK

In this work we present the development (the details of
the experiment results appear in ([9]) of three methods for
dealing with corrupted data in different cases: The first method
considers Byzantine data items that were added to a given
non-corrupted data set. Batches of uniformly selected data
items and Chernoff bound are used to reveal the distribution
parameters of the original data set. The adversary, knowing our
machine learning procedure, can choose, in the most malicious
way on, up to the 2%. malicious data; Note, that there is no
requirement for the additional noise to come from distribution
different than the data items distribution. We prove that the
use of uniformly chosen batches and the use of Chernoff
bound reveals the parameters of the non-Byzantine data items.
We propose to use certainty level that takes into account the
bounded number of Byzantine data items that may influence
the classification. The third method is designed for the case of
several features, some of which are partly or entirely corrupted.
We present an enhanced random forest technique based on
certainty level at the leaves. The enhanced random forest copes
well with corrupted data. We implemented a system and show
that ours performs significantly better than the original random
forest both with and without corrupted data sets; we are certain
that it will be used in practice.

In the scope of distributed systems, such as sensor networks,
the methods can withstand malicious data received from a
small portion of the sensors, and still achieve meaningful and
useful machine learning results.

REFERENCES

[1] Aslam, J., Decatur, S.: Specification and simulation of statistical query
algorithms for efficiency and noise tolerance. J. Comput. Syst. Sci. 56,
191-2087 (1998)

[2] Auer, P.: Learning nested differences in the presence of malicious noise.
Theoretical Computer Science 185(1), 159-175 (1997)

[3] Auer, P., Cesa-Bianchi, N.: On-line learning with malicious noise and
the closure algorithm, Ann. Math. and Artif. Intel. 23, 83-99 (1998)

[4] Berikov, V., Litvinenko, A.: Methods for statistical data analysis with
decision tree, Novosibirsk Sobolev Institute of Mathematics, (2003)

[5] Breiman, L.: Random forests, Statistics department, Technical report,
University of California, Berkeley (1999)

[6] Breiman, L., Friedman, J. H., Olshen, R.A., Stone, C.J.: Classification
and Regression Trees, hapman & Hall, Boca Raton (1993)

[7] Cesa-Bianchi, N., Dichterman, E., Fischer, P., Shamir, E., Simon, U. H.:
ample-efficient strategies for learning in the presence of noise, . ACM
46(5), 684-719 (1999)

[8] Decatur, S.: Statistical queries and faulty PAC oracles, Proc. Sixth Work.
on Comp. Learning Theory, 262-268 (1993)

[9] Dolev, S., Leshem, G., Yagel, R.: Purifying Data by Machine Learning
with Certainty Levels, Technical Report August 2009, Dept. of Computer
Science, Ben-Gurion University of the Negev (TR-09-06)

[10] Kearns, M., Li, M.: Learning in the presence of malicious errors,SIAM
J. Comput. 22(4), 807-837 (1993)

[11] Mansour, Y., Parnas, M.: Learning conjunctions with noise under product
distributions, Inf. Proc. Let. 68(4), 189-196 (1998)

[12] Mitchell, T. M.: Machine Learning, McGraw-Hill (1997)

[13] Quinlan, J. R.: C4.5: Programs for Machine Learning, Morgan Kauf-
mann Publishers (1993)

[14] Quinlan, J. R.: Induction of Decision Trees, Machine Learning (1986)

[15] Servedio, A. R.: Smooth boosting and learning with malicious noise,
Journal of Machine Learning Research (4), 633-648 (2003)

[16] Valiant, G. L.: A theory of the learnable, Communications of the ACM
27(11), 1134-1142 (1984)



