
An Agent Exploration in Unknown Undirected Graphs with
Whiteboards

Yuichi Sudo
Graduate School of

Information Science and
Technology, Osaka University

y-sudou@ist.osaka-
u.ac.jp

Daisuke Baba
Graduate School of

Information Science and
Technology, Osaka University

d-baba@ist.osaka-
u.ac.jp

Junya Nakamura
Graduate School of

Information Science and
Technology, Osaka University

junya-n@ist.osaka-
u.ac.jp

Fukuhito Ooshita
Graduate School of

Information Science and
Technology, Osaka University

f-oosita@ist.osaka-
u.ac.jp

Hirotsugu Kakugawa
Graduate School of

Information Science and
Technology, Osaka University
kakugawa@ist.osaka-

u.ac.jp

Toshimitsu Masuzawa
Graduate School of

Information Science and
Technology, Osaka University
masuzawa@ist.osaka-

u.ac.jp

ABSTRACT
We consider the exploration problem with a single agent
in undirected graphs. Starting from an arbitrary node, the
agent has to explore all the nodes and edges in the graph
and return to the starting node. Our goal is to minimize
both the number of agent moves and the memory space of
the agent, which dominate the amount of communication
during the exploration. In our setting, the agent is allowed
to use the local memory called the whiteboard on each node
(the whiteboard model), while most of existing exploration
algorithms do not use the whiteboard (the no-whiteboard
model). In the no-whiteboard model, the agent must mem-
orize in its memory all information needed to explore the
graph, and thus designing an exploration algorithm of small
agent memory is difficult. In this paper, by allowing the
agent to use whiteboards, we present four exploration algo-
rithms such that both the number of agent moves and the
agent memory space are small.

Keywords
graph exploration, mobile agent, whiteboard

1. INTRODUCTION
We consider the exploration problem with a single agent in
undirected graphs. The agent has to explore all the nodes
and edges in the graph and return to its starting node. No a
priori knowledge about the graph (e.g. the number of nodes
and topology) is given to the agent. Graph exploration is one
of the most fundamental and important problems in agent

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WRAS ’10 Zurich, Switzerland
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

systems. For example, in a computer network, the agent
can search data at unknown computer nodes by visiting all
the nodes, or can find broken communication channels by
traversing all the channels.

Our goal is to design an exploration algorithm with a small
number of moves and a small memory size of an agent. We
achieve this goal by adopting the whiteboard model. In the
whiteboard model, every node is equipped with a local mem-
ory called the whiteboard, and the agent can freely read and
write the content of the whiteboard while it stays at the
node. On the contrary, the no-whiteboard model does not
assume the existence of whiteboards. In the no-whiteboard
model, the agent must memorize in its memory all informa-
tion needed to explore the whole graph, and thus designing
an exploration algorithm of small agent memory is difficult.
On the other hand, in the whiteboard model, the informa-
tion can be stored distributedly on nodes of the graph, and
thus there is a possibility to explore the whole graph with
small memory of the agent. In this paper, we present four
exploration algorithms in the whiteboard model. By us-
ing whiteboards, these algorithms reduce the agent memory
space of two existing algorithms which guarantee a small
number of moves but require a relatively large agent mem-
ory space. Thus, our proposed algorithms realize both a
small number of moves and a small memory of the agent.

Related Works.
Graph exploration has been widely studied in the literature.
The study of graph exploration can be loosely classified by
the anonymity and the topology of the graph. If all the
nodes in a graph have unique identifiers, the graph is called
labeled. On the contrary, if any node has no identifier, the
graph is called anonymous.

When the graph is labeled, the exploration problem can
be easily solved. For example, the agent explores all nodes
and edges in the graph with 2m moves by the simple depth-
first search (We denote the number of edges in the graph
by m. In what follows, we denote the depth-first search
by DFS). Panaite and Pelc [10] improve DFS and proposed
faster algorithm, with which the agent explores an arbitrary

undirected graph within m+3n moves (We denote the num-
ber of nodes in the graph by n. In what follows, we denote
this algorithm by PP). When the agent moves through al-
ready traversed edge, the move is said to be a penalty move.
Algorithm PP achieves O(n) penalty moves, which is asymp-
totically optimal: Consider the case that the agent begins
the exploration at the center node of a line graph. The ex-
ploration of labeled directed graphs is studied in [1, 5, 7].

Exploring an anonymous graph is more demanding task.
Budach[3] proves that the agent cannot explore an arbi-
trary anonymous graph without the ability to mark nodes in
some way. Therefore, anonymous graph exploration is stud-
ied with assuming that the agent can mark nodes in some
way[2, 4, 8] or with restricting the topology of the graph[6,
9]. In the model where the agent can put and retrieve a
finite number of pebbles on nodes, Bender et al.[2] analyze a
necessary and sufficient number of pebbles to explore any ar-
bitrary directed graph with a polynomial number of moves.
Fraigniaud et al.[8] proposed an algorithm with a constant-
size agent memory which explores any arbitrary directed
graphs in the whiteboard model. Their interest is to mini-
mize the size of agent and whiteboard memory, and they do
not care the number of agent moves (although their algo-
rithm terminates in polynomial time). Das et al.[4] consider
the exploration by k agents in the whiteboard model. They
propose an exploration algorithm that costs only O(m log k)
agent moves. Here the agents have to accomplish not only
graph exploration but also constructing the same maps of
the graph. Hence, the size of agent memory is not the au-
thors’ concern.

Our Contribution.
In this paper, we present four algorithms WDFS1, WDFS2,
WPP1 and WPP2 in whiteboard model. Algorithms WDFS1

and WDFS2 are designed based on DFS, and algorithms
WPP1 and WPP2 are designed based on PP [10].

Generally, it is not an easy task to simulate an algo-
rithm designed in no-whiteboard model with an algorithm
of smaller agent memory in whiteboard model. Let A be an
algorithm that is designed in no-whiteboard model and re-
quires large agent memory. In the execution of A, the agent
can remember global information about the graph in its suf-
ficiently large memory. Hence, at any node, the agent can
determine the next move depending on the global informa-
tion. On the other hand, in the execution of the simulating
algorithm, the agent cannot remember such global informa-
tion in its memory due to the lack of space. Hence, at node
v, the agent has to determine the next move depending on
only local information stored on v’s whiteboard.

The performances of these algorithms are summarized in
Table 1. The two existing algorithms guarantee a small num-
ber of moves without using whiteboards but require rela-
tively large spaces of the agent memory. In algorithm DFS,
the agent use Θ(m + n log n) bits of its memory to remem-
ber all the already visited nodes and all the already traversed
edges. In algorithm PP, the agent use Θ(MAP) bits of its
memory to remember the map of the explored parts of the
graph, where MAP = min(m log n, n2). Our proposed al-
gorithms reduce these relatively large spaces of the agent
memory by utilizing whiteboards. Algorithms WDFS1 and
WDFS2 simulate DFS with no agent memory, and algorithms
WPP1 and WPP2 simulate PP with Θ(n) and Θ(n log n) bits
of agent memory respectively. The algorithms other than

Table 1: Performances of algorithms. (δ(v) is the
degree of node v. MAP = min(m log n, n2).)

#moves agent memory memory of node v

DFS 2m Θ(m + n log n) -
PP[10] m + 3n Θ(MAP) -

WDFS1 2m 0 Θ(δ(v))
WDFS2 4m 0 Θ(log δ(v))
WPP1 m + 3n Θ(n) Θ(n)
WPP2 m + 3n Θ(n log n) Θ(δ(v) + log n)

WDFS2 keep the same number of moves as the original ex-
isting algorithms while the number of moves of WDFS2 is at
most twice as those of DFS. Algorithms WDFS1 and WDFS2

have a trade-off relation, and so do WPP1 and WPP2. Algo-
rithm WDFS2 has a smaller whiteboard memory but costs a
larger number of moves compared to WDFS1. Algorithm
WPP2 has a smaller whiteboard memory but requires a
larger agent memory compared to WDFS1.

All our algorithms do not require labels of nodes while
the two existing algorithms require them. In DFS1 and
DFS2, the agent do not use the labels, and in PP1 and PP2,
the agent can easily assigns unique labels to all nodes using
O(log n) space of both the agent and the whiteboard of each
node. However, for simplicity, the existence of label on each
node is assumed as the model. (we shall see in the next
section.)

2. PRELIMINARIES
The environment is represented by a simple undirected con-
nected graph G = (V, E, p) where V is the set of nodes and E
is the set of edges. We denote |V | and |E| by n and m respec-
tively. The set N(v) of neighboring nodes of v and the set
I(v) of edges incident to v is defined by {u ∈ V | {v, u} ∈ E}
and {{v, u} ∈ E | u ∈ V } respectively. We denote |I(v)|,
the degree of v, by δ(v). A port labeling p is a collection
of functions (pv)v∈V where each pv : I(v) → {1, 2, . . . , δ(v)}
uniquely assigns port number to every edge incident to node
v. The agent needs these port numbers to distinguish edges
in I(v) when located at v. The port labeling p is locally
independent: two port numbers pu(e) and pv(e) may differ
for edge e = {u, v} ∈ E. The node u neighboring to node
v such that pv{v, u} = q is called the qth neighbor of v and
is denoted by N(v)[q]. All nodes v ∈ V have the unique
identifiers id(v) ∈ N. The size of the identifier space is poly-
nomial, that is, maxv∈V id(v) ∈ O(nc) is assumed for some
constant c.

An agent A = (P ,M) consists of a constant-size program
(algorithm) P and a finite memory M. The agent exists on
exactly one node v ∈ V at any time, and moves through an
edge incident to v. Program P has complete control over
the move of the agent. The current node that the agent
currently exists on is denoted by vcur. The previous node
that the agent existed before moving to vcur is denoted by
vpre. Port pin is defined as pvcur

({vpre, vcur}), via which the
agent comes to vcur. For simplicity, we suppose vpre = null
and pin = 0 at the beginning of exploration. Every node v ∈
V has a whiteboard w(v), which the agent can access freely at

the visit of v. The content of M and w(v) are bit sequences.
Initially, M = ε and w(v) = ε hold for any v ∈ V where
ε represents the null string. Program P is invoked every
time the agent finishes its move or when the exploration
begins. It takes 5-tuple (δ(vcur), pin,M, w(vcur), id(vcur)) as
the input, and returns 3-tuple (pout,M

′, w′) as the output.
Here pout is a port number of v, and both M′ and w′ are
arbitrary bit sequences. Obtaining the output from P , the
agent performs two substitutions M := M′ and w(vcur) :=
w′, and then, moves to the next node through port pout.
The agent terminates when pout = 0.

Exploration Problem.
The starting node, denoted by vst, is the node on which the
agent exists at the beginning of exploration. The goal of the
agent is to traverse all edges1 in the graph and return to
the starting node. More precisely, we say that algorithm
P solves the exploration problem if the following conditions
hold regardless of graph G and starting node vst: (i) agent
A = (P ,M) eventually terminates, (ii) the agent traverses
every edge at least once until it terminates, and (iii) vcur =
vst holds when the agent terminates.

We measure the efficiency of program (algorithm) P by
three metrics: the number of moves, the (agent) memory
space, and the whiteboard memory space. The first one is
defined as the number of the moves that the agent made
during the exploration. The memory space of the agent
and the whiteboard on node v are defined as the maximum
numbers of bits, during the exploration, of M and w(v)
respectively. All the above metrics is evaluated in the worst-
case manner with respect to G and v.

In what follows, a node (or edge) is called explored when
the node (edge) is already visited (traversed) at the time.
Otherwise, the node (edge) is called unexplored. A node v
is saturated if all edges in I(v) are explored.

3. ALGORITHMS BASED ON DFS
In this section, we present algorithms WDFS1 and WDFS2,
both of which are based on algorithm DFS.

The original DFS, illustrated in Algorithm 1, is simple.
Here, we call a move invoked by Line 7 a forward move
and call a move invoked by another line a backward move
(or backtracking). The agent keeps on making a forward
move to a new node as long as an unexplored edge exists in
I(vcur) (Line 7). However, if the new node is already visited,
the agent backtracks to the last visited node (Line 4), and
resumes moving forward. If the new node is not visited be-
fore, the agent remembers port pin in a variable port return(v)
of agent memory (Line 2), and continues to move forward.
The agent backtracks through port port return(vcur) when the
agent cannot find any unexplored edge in I(vcur) (Line 9).
Eventually, vst is saturated and then the agent terminates
the exploration. The number of agent moves is exactly 2m
since the agent makes exactly one forward move and exactly
one backward move over every edge in the graph.

WDFS1.
In WDFS1, the agent completely simulates the move of DFS

with no memory space of agent by using Θ(δ(v)) space of
w(v). To this end, it is sufficient for the agent to get the
following information locally at node v: (i) whether v is vis-

1Then, it is guaranteed that all nodes are also visited.

Algorithm 1 DFS

Variable in Agent

portreturn(v) ∈ {1, 2, . . . , δ(v)}

Program

1: if vcur is not visited before then
2: port return(vcur) := pin // pin = 0 when vcur = vst

3: else if the last move is performed in Line 7 then
4: Move through pin // Backtrack to vpre

5: end if
6: if unexplored edge e ∈ I(vcur) exists then
7: Move through edge e
8: else
9: Move through port port return(vcur)

// When vcur = vst, the agent stops
since port return(vcur) must be 0

10: end if

ited or not, (ii) whether every e ∈ I(v) is visited or not, (iii)
the value of port return(v) and (iv) whether the last move is
forward or not. The agent can easily records on w(v) the
information of (i), (ii) and (iii) with O(δ(v)) space. Fur-
thermore, the agent can evaluate the condition of (iv) with
only local information: the last move is forward if and only
if edge p−1

v (pin) (= {vpre, vcur}) was unexplored just before
the last move.

WDFS2.
In WDFS2, only O(log δ(v)) space is available on whiteboard
w(v). With O(log δ(v)) space, the agent can still store infor-
mation (i) and (iii) on w(v) but cannot record information
(ii). To explore all edges in I(v) without knowing which
edges in I(vcur) are explored, the agent maintains a white-
board variable port recent (v), which memorizes the most re-
cently used port to move forward from v. By using vari-
able portrecent (v), the agent moves forward through all edges
e ∈ I(v) other than {p−1

v (portreturn(v))} in ascending order
of port numbers pv(e). Variable port recent (v) are also used
to evaluate condition (iv): the last move is forward if and
only if pin 6= portrecent (vcur) holds or v is not visited before.

In DFS (and WDFS1), the agent performs a forward move
only through an unexplored edge. On the other hand, in
WDFS2, the agent may move forward through an explored
edge. Letting pw({v, w}) = 5, consider the situation that
the agent makes a forward move from node v to w when
portrecent (w) = 3. At this time, the agent cannot record that
edge {v, w} (port 5) is already explored, and consequently,
the agent will eventually make a forward move from w to
v. Thus, the agent makes an additional move in WDFS2.
However, the number of agent moves is bounded above by
4m (The proof is omitted due to the lack of space).

4. ALGORITHMS BASED ON PP
In this section, we present algorithms WPP1 and WPP2 both
of which are based on algorithm PP developed by Panaite
and Pelc[10]. First of all, we introduce the original algorithm
PP.

4.1 Algorithm PP [10]
The algorithm PP solves the exploration problem in any
undirected graph with no whiteboard and O(MAP) agent
memory (MAP = min(m log n, n2)). During the execution

Algorithm 2 PP

Main Routine:

1: Saturate(vcur) // Saturate the start node vst

2: while true do
3: if ∃u ∈ N(vcur), u /∈ Vs then
4: Move through edge {vcur, u} // Move to u
5: portparent(vcur) := pvcur

({vpre, vcur})
6: Saturate(vcur) // Incorporate vcur = u into S
7: else if vcur 6= vst then
8: Move through port portparent(v)
9: else

10: STOP() // At this time, S is a spanning tree
11: end if
12: end while

Saturate(r):

13: while not (vcur = r and vcur is saturated) do
14: if non-visited edge e ∈ I(vcur) exists then
15: GetForward(e)
16: else
17: GoBack()
18: end if
19: end while

{The conditions in Lines 3, 13 and 14 are evaluated with
map H .}

of PP, the agent memorizes the map H = (VH , EH) of graph
G. The map H consists of explored nodes and edges, that
is, VH = {v ∈ V | v is explored} and EH = {e ∈ E |
e is explored}. The agent can easily construct the map H
thanks to identifiers of nodes. We omit the map construction
part of algorithm PP from the pseudo code (Algorithm 2).

The algorithm PP, illustrated in Algorithm 2, tries to sat-
urate all the nodes in V . Obviously, all edges are explored
if all the nodes are saturated. To saturate a node r, PP uses
subroutine Saturate(r). This subroutine guarantees that,
when the execution finishes, node r is saturated and the
agent exists on r again. During exploration, the agent con-
structs and keeps the saturated tree S = (VS, ES), consists
of all the nodes v where the agent finishes Saturate(v). The
saturated tree S is maintained by variable portparent (v) of
the agent, which stores a port number that points to v’s
parent in S. That is, saturated tree S is defined as fol-
lows: VS = {v ∈ V | Saturate(v) finished already} and
ES = {p−1

v (portparent(v)) | v ∈ VS}. When all the nodes
are included in S, the exploration finishes.

All instructions of the main routine is well defined: In line
3, since node vcur has been already saturated, the agent eas-
ily evaluates the condition ∃u ∈ N(vcur), u /∈ Vs using the
map H . The agent does not backtrack (Line 8) unless all
neighboring nodes belong to S. Consequently, S is a span-
ning tree when the agent stops at node vst. This means that
all nodes are saturated. Hence, PP solves the exploration
problem correctly.

Let us observe how Saturate(r) saturates node r. During
the execution of Saturate(r), the agent keeps the return path
RP = (v0, e1, v1, e2, . . . , ek, vk), v0 = r, vk = vcur in its
memory M. The initial value of RP is (r). All the moves
are performed by invoking two subroutines, GetForward(e)
and GoBack(). When GetForward(e) is invoked, the agent
moves through edge e, and then adds (e, vcur) to the tail
of RP . If this addition makes a cycle in RP , the agent

deletes the cycle. More precisely, if vcur = vi holds for some
i, 0 ≤ i ≤ k, then the agent assigns (v0, e1, v1, e2, . . . , ei, vi)
to RP . When GoBack() is invoked, the agent retrieves the
last two elements (ek, vk) from RP and moves through edge
ek. The agent keeps on traversing an unexplored edge e by
invoking GetForward(e) as long as unexplored edges exist
in I(vcur) (Line 15). The agent backtracks along RP by
invoking GoBack() when no unexplored edge exists in I(vcur)
(Line 17). By definition, it is guaranteed that r is saturated
when Saturate(r) finishes. Note that, during the execution
of Saturate(r), another node v may be saturated. However,
v is not included in saturated tree S at that time. Such v is
included in S when Saturate(v) is executed.

We consider the number of moves required for exploration
by PP. Note that the agent invokes GoBack() only when vcur

is saturated. Consider the case that the agent has just per-
formed GoBack() and backtracked from a node v. Then,
v is saturated, and RP does not include v. Hence, after
that, the agent never visits v during the execution of any
Saturate(u) for any node u ∈ V . This means that the num-
ber of invoking GoBack() is at most n in all the executions of
Saturate(). Clearly, the number of invoking GetForward()
is at most m. (Every invocation consumes one unexplored
edge). Hence, the number of moves performed during the
execution of Saturate() is at most m + n. And, the num-
ber of moves during the execution of main-routine is exactly
2(n − 1)(This routine makes depth-first search on the satu-
rated tree S). Summing up these upper bounds, we see that
the number of moves of PP is at most m + 3n.

Theorem 1 (Panaite and Pelc[10]).
Without whiteboards, an agent A = (PP,M) completes ex-
ploration for any undirected graph G = (V, E) and any start-
ing node v ∈ V with at most m + 3n moves.

4.2 Algorithms WPP1 and WPP2
In this section, we present our two algorithms, WPP1 and
WPP2. Using whiteboard, these two algorithms simulate
the move of PP with less (agent) memory space. Algo-
rithm WPP1 uses O(n) memory space on the agent and every
whiteboard while algorithm WPP2 uses O(n log n) memory
space on the agent and O(δ(v)+log n) space on every white-
board w(v).

In both the two algorithms, we assume that all id(v) sat-
isfies 1 ≤ id(v) ≤ n. This assumption does not matter since
the agent can easily reassigns the labels 1, . . . , n to all nodes
by using O(log n) space of both the agent and each white-
board w(v). In addition, Ω(δ(v)) space of w(v) also makes
it possible that the agent records on w(v) whether v has al-
ready been visited and whether e has already been explored
or not for every e ∈ I(v). Hence, we also assume that, at
any time, the agent knows whether it already visited vcur

before or not and which edges in I(vcur) are explored.
In the rest of this section, we illustrate how WPP1 and

WPP2 simulate the subroutine Saturate(r) (Section 4.2.1)
and the main routine of PP (Section 4.2.2).

4.2.1 Saturate(v) with Whiteboards
The Difficulty of simulating Saturate(r) exists only in main-
taining the return path RP in the subroutines GetForward()
and GoBack(). Remind that the return path RP is the
path from r to vcur, where r is the node that has invoked
Saturate(r). Other instructions can be easily performed:
The agent can easily evaluate the condition vcur = r (Line

13) by marking the node r initially, and the other conditions
are also easy to evaluate. Clearly, the simulation succeeds if
the agent maintains the return path correctly.

Procedure in WPP2.
As for WPP2, the solution is easy. In WPP2, the agent can
memorize the entire return path in its memory M. The
agent remembers the return path RP = (v0, e1, . . . , ek, vk)
as a sequence of pairs of a node label and a port number
RP2 = (id(v0), q1, . . . , qk, id(vk)). Here, qi = pvi

(ei) holds
for every i, 1 ≤ i ≤ k. Since the length of the return path
is at most n − 1, available agent memory space O(n log n)
is sufficient to keep RP2. Since the agent have RP2 in its
memory, the agent can maintain RP2 in exactly the same
way as the agent obeying PP maintains RP .

Lemma 1. The subroutine Saturate(r) of WPP2 simu-
lates Saturate(r) of PP. It uses O(n log n) memory space
of the agent and O(log n + δ(v)) memory space of w(v).

Procedure in WPP1.
In the rest of this section, we describe how WPP1 main-
tains the return path. Due to the lack of memory space,
the agent cannot memorize the entire return path RP =
(v0, e1, v1, . . . , ek, vk) in its memory M. However, WPP1

maintains RP by storing it separately on the agent memory
and the whiteboards of all the nodes in RP . The agent only
remembers the set of identifiers {id(vj) | 0 ≤ j ≤ k} on
the variable RP1 instead of the sequence of the identifiers.
Each whiteboard w(vi) contains the port number pvi

(ei) in
the variables port return(vi). The set RP1 is used to detect a
cycle in RP in GetForward(e), and port return(v) is used to
come back along RP in GoBack(). In addition, the set of
identifiers {id(vj) | 0 ≤ j ≤ i} is stored in the whiteboard
variable hist(vi) of node vi. This variable is used to delete
a cycle when the agent detects the cycle in RP . The pseudo
codes of GetForward(e) and GoBack() are given in Algo-
rithm 3. When GetForward(e) is invoked, the agent moves
through edge e, and then checks whether this move makes a
cycle on the return path. This check is easily done: a cycle is
created if and only if the detecting condition id(vcur) ∈ RP1

holds. If the condition does not hold, the agent extends the
return path by updating RP1 and portreturn(vcur) (Lines 5
and 6). At the same time, the agent stores the copy of RP1

in hist(vcur). If the detecting condition holds, the agent
assigns hist(vcur) to RP1 (Line 7). Then, the return path
RP equals to the path that RP1 and portreturn(vi) together
represent. When GoBack() is invoked, the agent removes
node vcur (= vk) from RP1, and then moves through port
port return(vcur) (= pvk

(ek)).
We have the following lemma. Note that the variables

RP1 and hist(v) can be implemented as n-bit array.

Lemma 2. The subroutine Saturate(r) of WPP1 simu-
lates Saturate(r) of PP. It uses O(n) memory space of the
agent and O(n) memory space of w(v).

4.2.2 Main Routine with Whiteboards
Both algorithms WPP1 and WPP2 simulate the main rou-
tine in the same way. In this section, we call them WPP

collectively.

Algorithm 3 GetForward(e) and GoBack() of WPP1

Variable in Agent

RP1 ∈ 2{1,2,...,n} : Initially RP1 = {id(r)}

Variables in v’s Whiteboard

portreturn(v) ∈ {1, 2, . . . , δ(v)}

hist(v) ∈ 2{1,2,...,n} : Initially hist(r) = {id(r)}

GetForward(e)

1: Move through edge e
2: if id(vcur) ∈ RP1 then
3: RP1 := hist(vcur) // Delete a detected cycle
4: else
5: RP1 := RP1 ∪ {id(vcur)} // Extend the return path
6: port return(vcur) := pin

7: hist(vcur) := RP1 // Store the current RP1 on w(v)
8: end if

GoBack()

9: RP1 := RP1 \ {vcur}
10: Move through port return(vcur)

The goal of the main routine is to incorporate all the
nodes into the saturated tree S with 2n agent moves. The
original PP achieves this goal in a simple way: If node
u ∈ N(vcur) \ VS exists then node u and edge {vcur, u} is
selected to be incorporated into S (Lines 3-6); Otherwise,
the agent backtracks to the parent node of vcur in S (Line
8). However, in the execution of WPP, the agent cannot
evaluate the condition u /∈ VS for any u ∈ N(vcur) because
the agent cannot have any map of G. Therefore, another
mechanism is needed to incorporate all the nodes into S
with 2n agent moves.

Our solution is as follows. During the execution of Saturate(),
the agent constructs a directed spanning tree D and stores
its edges on whiteboards. In the execution of the main rou-
tine, the agent incorporates all the nodes into S with 2(n−1)
moves by performing depth-first traversal over spanning tree
D. Directed tree D = (VD, ED) is constructed in the follow-
ing way: (i) Initially, VD = {vst} and ED = ∅, and (ii) Ev-
ery time the agent visits unexplored node v, node vcur (= v)
and directed edge (vcur, vpre) is added to VD and ED re-
spectively. We say that node u is a child of node v if edge
(u, v) exists in ED, and define the children port set of v as
CD(v) = {p | (N(v)[p], v) ∈ ED}. In WPP, the agent keeps
CD(v) in a variable chi(v) of whiteboard w(v), and selects
from chi(vcur) a port to move through in Lines 3 and 4.
More precisely, WPP alters Lines 3 and 4 in Algorithm 2 as
follows.

3’ : if ∃q ∈ (chi(vcur) \ portused(vcur)) then
4-1: portused(vcur) := portused(vcur) ∪ {q}
4-2: Move through port q

Here, portused(v) is a variable on w(v), which represents the
set of ports that are already used in the depth-first traver-
sal over D. Initially portused(v) = ∅ for all v ∈ V . All
the other instructions (Lines 1-2 and 5-12) remain the same
as the main routine of original PP. Note that the variable
portparent (v) used in Lines 5 and 8 occupies only O(log δ(v))
space on each whiteboard w(v). The agent does not remem-
ber D itself, but performs depth-first traversal over D with
whiteboard variables chi(v) and portused(v).

Algorithm 4 ConstructTree

Variables in Agent

flag : {1, . . . , n} → {0, 1} : Initially, ∀v ∈ V, flag(v) = 0
labelpre ∈ {1, . . . , n}

Variables in v’s Whiteboard

portrecent (v) ∈ {1, 2, . . . , δ(v)}

chi(v) ∈ 2{1,2,...,δ(v)} : Initially, ∀v ∈ V, chi(v) = ∅

Before leaving via pout

1: portrecent (vcur) := pout

2: labelpre := id(vcur)

After Arriving at vcur

3: if vcur is not already visited before then
4: flag(labelpre) := 1
5: end if
6: if flag(id(vcur)) = 1 then
7: chi(vcur) := chi(vcur) ∪ {port recent (vcur)}
8: flag(id(vcur)) := 0
9: end if

To maintain the variable chi(v), algorithm WPP executes
a subroutine ConstructTree(), in parallel with the main rou-
tine and Saturate(). The pseudo code of ConstructTree is
illustrated in Algorithm 4. This subroutine is invoked just
before and just after every move of the agent. And, this
subroutine does not trigger any move of the agent directly.

The idea of ConstructTree is simple. Consider the case
that the agent has just moved to node v from node u, and
v is unexplored before the move. Then, by raising a flag on
u (agent variable flag(u)), the agent remembers that u has
a new child (Line 4). When the agent visits u again after
that, the agent knows from the flag that the current node
has a new child, and then adds pu({u, v}) to chi(u) (Line
7). To realize this addition, the agent stores port number
pu({u, v}) on whiteboard w(u) every time before it moves
from u to v (Line 1). By definition, the following lemma
trivially holds.

Lemma 3. When the agent exists on node v, chi(v) equals
to CD(v). That is, chi(vcur) = CD(vcur) holds at any time.

We denote D at the end of the exploration by Dfinal =
(VDfinal

, EDfinal
). Note that Line 3’ is reached only after

Saturate(vcur) finished. Clearly, CD(vcur) = CDfinal
(vcur) is

guaranteed after Saturate(vcur) has finished. Therefore, by
Lemma 3, chi(vcur) = CDfinal

(vcur) holds when Line 3’ is
reached. Consequently, the agent performs the depth-first
traversal over Dfinal during the main routine in WPP, which
leads to the following lemma.

Lemma 4. S = Dfinal holds when the agent terminates.

Lemma 5. Dfinal is a spanning tree. (i.e. VDfinal
= V).

Proof . Assume that Dfinal is not a spanning tree. Then,
two nodes u, v ∈ V must exist such that u /∈ VDfinal

, v ∈
VDfinal

, and u ∈ N(v) holds. However, by Lemma 4, edge
{u, v} is explored because v ∈ VDfinal

= VS holds. This
means that node u is also explored, and thus u ∈ VDfinal

.
This leads to a contradiction.

By Lemmas 4 and 5, S is a spanning tree at the end
of the exploration. This means that the agent explores all

the edges in G. In the main routine, the agent performs
depth-first search over the spanning tree Dfinal. Hence, the
number of moves during the execution of the main routine
is exactly 2(n−1). And, by Lemmas 1 and 2, the number of
moves during the execution of Saturate() is at most m + n.
Consequently, the following two theorems hold.

Theorem 2. WPP1 solves the exploration problem for any
undirected graph. The number of moves, the agent memory
space, and the whiteboard memory space of node v is m+3n,
O(n), and O(n) respectively.

Theorem 3. WPP2 solves the exploration problem for any
undirected graph. The number of moves, the agent memory
space, and the whiteboard memory space of node v is m+3n,
O(n log n), and O(δ(v) + log n) respectively.

5. CONCLUSION
In this paper, we proposed four exploration algorithms. By
using whiteboards, they solve the exploration problem for
any undirected graphs with a small number of moves and a
small agent memory.

6. ACKNOWLEDGEMENTS
This work is supported in part by Grant-in-Aid for Scien-

tific Research ((B)20300012, (B)22300009) of JSPS.

7. REFERENCES
[1] S. Albers and M.R. Henzinger. Exploring unknown

environments. In Proceedings of the twenty-ninth
annual ACM symposium on Theory of computing,
pages 416–425. ACM New York, NY, USA, 1997.

[2] M.A. Bender, A. Fernández, D. Ron, A. Sahai, and
S. Vadhan. The power of a pebble: Exploring and
mapping directed graphs. Information and
Computation, 176(1):1–21, 2002.

[3] L. Budach. Automata and labyrinths. Math.
Nachrichten, 86:195–282, 1978.

[4] S. Das, P. Flocchini, S. Kutten, A. Nayak, and
N. Santoro. Map construction of unknown graphs by
multiple agents. Theoretical Computer Science,
385(1-3):34–48, 2007.

[5] X. Deng and C.H. Papadimitriou. Exploring an
unknown graph. Journal of Graph Theory,
32(3):265–297, 1999.

[6] K. Diks, P. Fraigniaud, E. Kranakis, and A. Pelc. Tree
exploration with little memory. Journal of Algorithms,
51(1):38–63, 2004.

[7] R. Fleischer and G. Trippen. Exploring an unknown
graph efficiently. Lecture Notes in Computer Science,
3669:11–22, 2005.

[8] P. Fraigniaud and D. Ilcinkas. Digraphs exploration
with little memory. Lecture notes in computer science,
pages 246–257, 2004.

[9] L. Gasieniec, A. Pelc, T. Radzik, and X. Zhang. Tree
exploration with logarithmic memory. In Proceedings
of the eighteenth annual ACM-SIAM symposium on
Discrete algorithms, page 594. Society for Industrial
and Applied Mathematics, 2007.

[10] P. Panaite and A. Pelc. Exploring unknown undirected
graphs. Journal of Algorithms, 33(2):281–295, 1999.

