
Improving Validity of Query Answering in Dynamic
Systems ∗

Roberto Baldoni Silvia Bonomi Adriano Cerocchi Leonardo Querzoni
Sapienza Università di Roma, Via Ariosto 25, 00185 Roma, Italy

{baldoni,bonomi,cerocchi,querzoni}@dis.uniroma1.it

ABSTRACT
Let us consider a large scale distributed system and a query exe-
cuted on top of it where every process has to contribute to the result.
Informally, a query satisfies the interval validity property if its re-
sult has been calculated by retrieving data from a set of processes
containing at least all those ones that have been present in the sys-
tem during the whole query lifetime. If the system is prone to churn,
it is easy to show that a query cannot deterministically satisfy in-
terval validity. In this paper we propose a novel algorithm that can
be used to support distributed queries by increasing the probability
of a query to satisfy interval validity. The algorithm strives to (i)
reduce the query calculation time (to reduce the net effect of churn)
and to (ii) increase the robustness of the overlay network it builds
by clustering nodes into cliques of limited size in order for their
implementation to be still practical. The paper provides a set of
experiments that show the tradeoff between the churn rate and the
number of times the interval validity is satisfied.

Keywords
Distributed query answering, Interval validity, Dynamic distributed
systems.

1. INTRODUCTION
During the last years, internet-based services and applications

have experienced a huge growth. Nowadays, such applications (e.g.
social networks or collaborative information platforms) count mil-
lions of users, connected simultaneously, that produce and consume
information bringing their personal contribution to the application
life. Such huge amount of data represents the real added value of
these applications and their management through centralized plat-
forms is not a feasible solution (i.e. it does not scale).

In fact, real systems are built as highly distributed platforms
based on peer-to-peer (p2p) networks or cloud technologies, where
data are spread over a large number of machines connected through
network links. In such context, one of the main challenges is rep-
resented by the information retrieval: obtaining correct, complete

∗The work described in this paper was partially supported by the
EU Projects SM4All and SOFIA.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WRAS 2010 2010 July 29, Zurich, Switzerland.
Copyright 2010 ACM [to be supplied] ...$10.00.

and accurate results, for a query involving the participation of thou-
sand of processes storing a huge amount of data, is actually a very
complex task. In order to provide valid query answers, data stored
locally at each node have to be extensively checked and the query
result is the collection of all the data matching the conditions ex-
pressed in the query. However, this procedure is expensive and, in
distributed systems characterized by the continuous arrival and de-
parture of processes (phenomenon also known as churn), it is not
efficient. In fact, processes behave autonomously by joining and
leaving the system at their will without necessarily completing the
ongoing executions of a distributed algorithm. As a consequence,
the query result can be approximated. As an example, consider an
aggregate query (e.g. sum, count, average, max and min) where the
result is a single value computed by collecting the contributions of
all the processes. Providing an answer to such queries in presence
of churn is a challenging task. Bawa et al. introduced in [1] three
validity conditions for aggregate queries to formally define which
are the admissible results when they are executed in a distributed
system prone to continuous churn.
The first validity condition, namely snapshot validity, allows the
aggregate query to return any value such that it is the result of
the query executed on some snapshot of the network taken during
the query execution period. Interval validity allows the aggregate
query to return a value computed by taking into account at least
the contributions of all the processes part of the system for the en-
tire query period. Finally, single site validity allows the query to
return a value computed by taking into account at least all the con-
tributions of processes connected for the whole query execution
period. Note that, in a distributed system where processing times
and network latencies are not negligible, the query execution takes
a certain amount of time to be completed and, during this period,
the system changes its composition due to the churn action. As a
consequence, the authors have shown that snapshot validity and in-
terval validity cannot be deterministically achieved if the network
topology is arbitrary (i.e. the network appears as a random graph)
and the system is dynamic.

In this paper, we introduce a novel overlay network structure
to support aggregate queries execution satisfying interval validity
with high probability, in a distributed system prone to continuos
churn. The proposed overlay has a tree-based structure where ver-
texes of the tree are represented by virtual nodes. A virtual node is
a set of processes such that each of them is connected to each other
(i.e. processes composing the virtual node are connected through
a clique graph) and, given two virtual nodes, they are connected
establishing multi-edges.
Once the overlay is set up, it has to be maintained due to the con-
tinual arrival and departure of nodes; thus, we provide an algo-
rithm responsible of the overlay maintenance. In particular, the

algorithm includes a balance procedure to (i) maintain the size of
virtual nodes almost the same and (ii) to maintaining the tree with
the lowest diameter.
Finally, we provide an experimental evaluation of the proposed ap-
proach showing that, interval validity can be achieved with high
probability.

The rest of this paper is organized as follows: Section 2 intro-
duces the distributed query answering problem in distributed envi-
ronment, Section 3 presents the definition of the overlay network
structure and an algorithm for its maintenance, Section 4 provide
an experimental evaluation. Finally, related works are discussed in
Section 5 and then the conclusion.

2. ANSWERING QUERIES IN DISTRIBUTED
SETTINGS

2.1 System model
The distributed system is composed, at any time, by a finite set Π

of processes each of which is characterized by a unique identifier.
Processes part of the distributed system change along time, due to
join of new processes and voluntary leave of processes already part
of the system (i.e. the distributed system is affected by continuos
churn). As a consequence of the churn, the size of the distributed
system can change unpredictably.
All processes that are part of the distributed system, even for a
very short period of time, constitute the overall system population
and this population can be composed by an infinite number of pro-
cesses.
Processes belonging to the distributed system can communicate by
exchanging messages through symmetric reliable communication
channels. Messages can experience unpredictable but limited de-
lays due to transmission latencies.
When a process pi wants to join the distributed system, it executes
a join procedure that, starting from a bootstrap process, provides pi
with a list, called local view, containing the identifiers of a subset
of processes part of the system.
Given the set of processes part of the system, together with their
local views, we obtain an overlay network. This overlay network
is a logical network that can be used to route application messages
among the processes in Π by using the logical links represented
by the identifiers contained in the local views. The number of
identifiers contained in each view is limited to avoid scalability is-
sues. An initial reference to a bootstrap process can be obtained by
querying an external bootstrap service [8] that returns the identifier
of a process in Π.
Processes can leave the system autonomously and independently;
when a process leaves the system, it does not perform any specific
procedure, it just stops receiving and sending messages; as a conse-
quence, a voluntary leave can be considered as a failure. For ease of
presentation, in the following we will use the term leave to indicate
both voluntary leaves and failures. When a process leaves, it disap-
pears from the overlay network and processes having its identifier
in their local view has a dead entry.

2.2 Calculating the answer for a query
Given a query issued on a distributed system, its result can be

computed by taking some basics steps. In particular, given a query
q, it has to be propagated to all the processes part of the system that
will evaluate it and then will return back the result to the query-
ing node. In the case of aggregation queries, the query initiator
will also aggregate all the received contributions. These steps are
generally referred as in network processing for query answering

[3]. Note that, while the techniques used to locally evaluate queries
strictly depends from the type of query, the query dissemination in
the whole system and the following gathering of results are usually
executed by leveraging a spanning tree of the underlying overlay
network. Such a tree can be pre-configured or built on-line when
the query is submitted. Whatever is the technique used to build and
maintain the dissemination tree, the query is first spread through a
broadcast operation and then the results are collected in a following
convergecast phase.

2.3 The validity of answers in dynamic set-
tings

Given a distributed system Π, composed by a set of processes
that does not change for a sufficient long time (i.e. the time needed
from the query to be disseminated and the results to be collected), it
is possible to adopt the approach described in the previous section
without having any problem. In fact, all the processes receiving the
query will answer with the result coming from their local evaluation
and the final result of the query will be valid as no failure or leave
is experienced during the query execution.

However, real systems are characterized by the presence of pro-
cesses that autonomously decide whether join or leave. Thus, if
Π changes during the query execution, defining the meaning of
“valid” for a query result is a tricky task. Bawa et al. provided
in [1] a set of validity properties that can be used to characterize
when the result of an aggregate query, executed in a dynamic sys-
tem, is valid. In particular, the authors observed that during the
execution of a query the system can undergo various changes that
make it pass through several configurations. A generic configura-
tion, identified as Πi, is defined by the set of processes belonging
to the distributed system. Given two following configurations, Πi

and Πi+1, they differ for one process that left or joined that system.
Given a query and the set C = {Πi,Πi+1, . . .Πi+j} of all the

system configurations experienced during its execution, the interval
validity property can be defined as follow:
Definition 1. A query is said to be interval valid if its result is
calculated on a set of processes H such that ∩x∈[i,i+j]Πx ⊆ H ⊆
∪x∈[i,i+j]Πx.

Intuitively, interval validity is satisfied when the result is calcu-
lated considering at least the contributions coming from the set of
processes part of the system for the whole query execution period;
nothing is said about processes that leave/join the network while the
query is already running and the final result can also include/miss
data coming from newly joined or leaving processes.

Bawa et al. showed that interval validity cannot be achieved de-
terministically in a distributed system without limiting the amount
of churn. Note that, Interval validity is violated only if some pro-
cesses that remain in the system for the whole query execution are,
at some point, isolated from the rest of the system, due to the dis-
connection of other processes that are in the path connecting them
to the query initiator. Let us observe that the probability of discon-
nection is related both to the ability of the overlay network man-
agement protocol to maintain stable connections among processes
in the system and to the churn rate.

From the above observation, it is possible to derive the following
general principles useful to increase the probability to have interval
query:
• disconnection of processes in the query spanning tree should

be avoided; only leaf processes are allowed to leave the system
during the query execution as their departure will not affect the
computation;
• the query execution period should be reduced as much as pos-

sible; given a specific churn rate, in fact, reducing the computation

time helps in reducing the total number of processes that join or
leave the system, thus lowering the overall probability that one of
these actions will render the final answer non interval valid.

3. ALGORITHM DESCRIPTION
In order to improve the probability for query answers to be inter-

val valid despite the presence of churn we should thus leverage the
aforementioned principles. Note that a simple tree based structure
(the one usually employed to solve such kind of tasks) could be
easily tuned in order to satisfy the second principle by increasing
the degree of each father node, consequently reducing the overall
tree height. However such a structure is inherently fragile and can
be easily destroyed in presence of even low churn rates.

Edges toward child nodes

Edges toward father node

Edges toward processes
in the same node

Virtual node

Virtual edge

Process

Figure 1: Architecture of the overlay

In order to overcome these limitations in this section we pro-
pose a novel overlay network whose internal structure has been
purposely designed to meet the two principles. The main idea be-
hind our solution is to organize processes in a tree-based structure
(Figure 1) where each node of the tree is a virtual node constituted
by several processes. Each virtual node is a robust structure that
can be used to make the overall overlay compliant with the first
principle; by smartly managing the presence of processes in vari-
ous virtual nodes we can reduce the probability that non-leaf virtual
nodes disappear during the query computation.

Queries can be computed on this structure by forwarding them
from the root node to all the virtual nodes and within them too, such
that each process is reached and can contribute to the final answer.

3.1 Architecture overview
Each virtual node in the overlay is constituted by a set of pro-

cesses that are tightly interconnected to form a clique. This kind of
topology makes the virtual node resistant to node departures, such
that it will not be possible to assist to overlay disconnection within
a same virtual node. Obviously this strong reliability comes at the
cost of increased network resource usage.

Different virtual nodes are interconnected through virtual edges.
Every virtual nodes can have up to K children nodes, with the ex-
ceptions of the leaves. Each virtual edge is a multi-edge constituted
by several overlay network edges that connect all processes in a
virtual node to processes in a second, distinct virtual node. Again,
this interconnection scheme has the sole purpose of reducing to a
bare minimum the probability of disconnections within the overlay
due to leaves.

As a consequence, as shown in the detail of Figure 1, each pro-
cess locally maintains different sets of links: (i) a set of links toward
sibling processes in the same virtual node, (ii) a set of links toward
processes in the father virtual node and (iii) up to K sets of links

toward processes belonging to child virtual nodes. All these links
represent the node’s local view of the overlay.

Virtual nodes are labelled with a name and an ID. A virtual node
name represents its position within the tree structure and can be
constructed by concatenating the name of the father node (if it ex-
ists) with a string that characterizes its position in the set of children
of its father node. This can be simply achieved by enumerating the
children from 0 to K − 1. A node ID is represented by a value
chosen at random in a large value space such that each ID can be
considered unique with high probability. Name and ID are chosen
as soon as a new virtual node is created.

3.2 Details of the operations
The algorithm is fundamentally based on the maintenance of the

overlay network realized by moving processes among virtual nodes
and by keeping the overlay edges up-to-date. The algorithm is
round-based and executed autonomously by every process in the
system. It is constituted by a periodic monitoring & balancing task
and a join procedure that is executed by processes willing to join
the overlay.
Join. The join procedure has the aim to connect a joining pro-
cess to the overlay. Connecting a process means that the algorithm
should position this process in a virtual node and set up the needed
edges for it to be robustly connected to the overlay. Note that vir-
tual nodes cannot be allowed to grow indefinitely as this would
make their maintenance extremely expensive resource-wise, thus
hampering the overall scalability of the overlay. A system-wide
configuration parameter Nmax defines the maximum size of each
virtual node.

When a new process p wants to join the overlay it inquiries a
bootstrap service to obtain the network address of an access point,
i.e. a process pap already part of the overlay; p sends a join request
message to pap and waits. When pap receives this request it checks
how many processes are currently part of the virtual node it belongs
to. Three different cases are possible:

• if the size of pap’s virtual node is smaller than Nmax, then p
can be accepted; therefore, pap sends back an acceptance message
containing a copy of all the edges in its local view;
• if the size of pap’s virtual node is equal or larger than Nmax,

the join request is forwarded to one of the virtual node’s children
with probability C/K, where 0 ≤ C ≤ K is the current number
of children; pap selects one of the children at random and forwards
the join request to one random process in this child node. With
probability 1− C/K, pap sends back to p an answer instructing it
to build a new child node with a given name and ID. This answer
contains also a copy of all the edges from pap pointing to processes
in its same virtual node.

Eventually, p will receive a positive answer from a process that
instruct it either to join an existing virtual node or to create a new
one; p will use the edges provided in the response to correctly pop-
ulate its local view. In order to keep the local view of all nodes as
much as possible up-to-date, p will inform about its presence all
the nodes connected through edges in its local view.

Note that, due to concurrency of the join, two processes could
possibly instruct two distinct joining nodes to create a new child
with a given name but with two different IDs. As a consequence,
the overlay could end-up having a partitioned virtual node. This is-
sue is solved by processes in the father virtual node: as soon as one
of them detects the inconsistency by checking the nodes different
IDs it will instruct processes in child node with lower ID to kill the
node by joining again the overlay.

Monitoring & balancing. Our algorithm treats processes leaving
the overlay as silent faults, therefore a monitoring mechanisms is
needed to maintain the healthiness of local views. This mecha-
nism is realized through a simple heartbeat-based approach: over-
lay edges are kept alive through a continuous lightweight exchange
of heartbeat messages between the connected nodes (only during
periods of inactivity for the edge); when a message is not received
before a timeout expires, the edge is simply dropped. The timeout
should be adequately designed depending on the peculiar charac-
teristics of the physical network where the system is deployed.

The disconnection of a process from the overlay reduces the size
of one of its virtual nodes. However, virtual nodes that are not
leaves of the tree structure should never allow their size to drop
below a threshold ; if this happens some virtual node could possibly
disappear leaving the tree structure partitioned and thus the overlay
network disconnected. This is something that can severely hamper
the system capabilities and should be avoided as much as possible.

Our algorithm reduces the probability of such disconnection to
take place by allowing processes to migrate among virtual nodes.
The idea is that virtual nodes whose size drops below a threshold
Nmin become attractors for processes belonging to their children
nodes; by using a probabilistic approach some of the processes in
the children node are attracted by the father virtual node and mi-
grate toward it. When the size of a virtual node is brought back
to Nmax it stops attracting processes. Through this approach, pro-
cesses tends to migrate toward the upper levels of the structure as
long as there is space available in the virtual nodes. As a conse-
quence, at runtime only leaf virtual nodes are expected to contain
less than Nmin processes for long periods of time because they are
not able to attract any process due to the lack of children.

This mechanisms is also employed to maintain the tree structure
balanced (as required by the second principle from Section 2.3).
Each virtual node leverages the information contained in query an-
swers to calculate the size of each of its children nodes. When the
size difference between two children is larger than a threshold δ,
the virtual node starts to attract processes from the larger child and
redirects these processes toward the smaller child. This process
continues until enough processes migrated to the smaller child and
the size different drops below δ. In this way the various branches
of the tree structure tend to converge at run-time toward a com-
mon depth. Having the tree structure balanced is fundamental in
order to reduce the number of links that must be traversed by each
query from the root till the leaves of the tree and then back toward
the root. Both the size of virtual nodes, defined by the thresholds
Nmax and Nmin, and their degree K, has a strong impact on the
overall scalability of the system. The number of edges in the lo-
cal view of a process is bounded by (K + 2) · Nmax (this upper
bound can sometimes be violated for short periods of time if a vir-
tual nodes grows larger than Nmax). While choosing large values
for Nmax and K can both increase the reliability of virtual nodes
and reduce the overall depth of the tree, it can impose too much
burden on the monitoring mechanism as local views could grow
too much. Therefore, It is advisable to choose these two param-
eters on the basis of (i) the expected dynamics of the system (i.e.
maximum churn rate) and (ii) quality of available resources both
on nodes (computational power) and on the network.

4. EXPERIMENTAL EVALUATION
In this section we report the results of an experimental evaluation

based on simulations that show how much our solution is able to
support distributed queries by delivering interval valid answers in
various scenarios with different levels of dynamics.

4.1 Setup
The proposed algorithm has been evaluated in scenarios char-

acterized by up to 2500 processes concurrently connected in the
overlay network.

In a dynamic P2P system churn (i) is always present [11, 12] and
(ii) it changes the population size between an upper and a lower
bound [6]. We tried to capture both aspects proposing two different
scenarios:

Constant size scenario. The system is kept at a constant size
while a continuous churn rate C is applied; in this case churn acts
by replacing processes: each leave of a process in the system is
followed by the join of a new one.

Variable size scenario. The system, starting from a population
of 2500 processes, undergoes a initial phase where processes are
only removed, then it passes to a second phase where processes are
added until it reaches again the initial population. During the two
phases the rate of addition/removal of processes is C.

With churn rate C we define the global rate at which join and
leave operations occur: if n is the initial number of processes in
the system, at each time unit n · C · t processes invoke the join
operation (IN-churn) and n ·C · (1− t) processes invoke the leave
operation (OUT-churn). The value 0 ≤ t ≤ 1 represent how join
and leave operations are balanced: for the constant size scenario
we set t = 0.5 (balanced IN/OUT-churn), while in the variable size
scenario t = 0 was set during the first phase (OUT-churn only) and
t = 1 was set during the second one (IN-churn only). Process that
leave the system are chosen uniformly at random fro the current
population.

In the tests we decided to stress the ability of our algorithm to
support large rates of churn without suffering from disconnections.
Therefore, we set the values Nmin = 15 and Nmax = 25 that
gives us fairly large and robust virtual nodes. In order to avoid
stressing too much the maintenance mechanism we decided to limit
the local view size by imposing K = 2. With such configuration
each process is expected to handle up to 100 edges, a number that
is reasonably manageable also by non powerful machines [2].

Tests were run on an ad-hoc round-based simulator. Each sim-
ulated process can exchange messages with all of the other pro-
cesses (i.e. the simulated underlying network is fully connected);
according to the system model messages are delivered within un-
predictable but bounded delays. In order to simplify the simulations
during the tests we fixed the latency bound such that each message
is delivered at most within the next round. We expect that increas-
ing this bound the algorithm execution would suffer more strongly
from concurrency issues; however, the analysis of the correspond-
ing impact is left for future work.

In the tests we analyze the property of interval validity measur-
ing the percentage of interval valid queries in function of the churn
level. During the simulation queries are triggered by a special pro-
cess in the root virtual node each time the answer to the previous
query is returned. The query we considered is very general: it con-
sists in collecting all the identifiers of the processes in the system.
The query initiator process is a special process that is always con-
nected in order to store the whole trace of the execution. Interval
validity is checked by taking a snapshot of the system at the begin-
ning and at the end of each query executions; Combining the results
of the query with the two collected snapshots it is possible to state
if the answer is interval valid.

Interval validity can be violated in two cases: (i) the overlay lose
a non-leaf virtual node, thus its sub-tree is not more able to con-
tribute to the query answer, and (ii) some erroneous virtual nodes
is destroyed due to concurrency issues and their processes are thus

forced to join again the system. When the latter case happens due
to massive concurrent connections to the overlay, large sets of pro-
cesses could be forced to migrate in the tree. The processes in-
volved in the migration could not be reached by the aggregation
procedure thus leading to interval validity violation. In the follow-
ing we will refer to the former case as connection fault and to the
latter as concurrency fault. Note that connection faults are strictly
related to the OUT-churn while concurrency faults are strictly re-
lated to IN-churn.

4.2 Tests in the constant size scenario
In this test we analyze a population characterized by a constant

size in presence of churn, i.e. IN-churn equals OUT-churn. The
purpose of this test is to find the limit above which the system is
no more able to provide interval valid answers with high probabil-
ity. We conducted several test by varying C from 0 to 0.1. Studies
based on traces from real peer-to-peer applications showed that re-
alistic churn rates are close to 10−4 additions/removals per time
unit, therefore we expect the rates we used to safely cover a large
spectrum of realistic scenarios.

10−3 10-2 10-1
0

10

20

30

40

50

60

70

80

90

100

pe
rc

en
ta

ge
 o

f i
nt

er
va

l v
al

id
 q

ue
rie

s

churn rate (C)

Figure 2: Percentage of interval valid queries versus churn rate
in the constant size scenario.

Figure 2 reports the results of these test obtained from several
runs. Confidence intervals (not showed in the graph) were always
below 5%. The curve shows a peculiar bi-modal behaviour of the
system. When C ranges from 0 to 0.002 the overlay efficiently
manages the arrival and the departure of processes, and all the
queries satisfy the interval validity property. When C ranges from
0.002 to 0.004 some limited burst of IN-churn impose migrations in
the overlay that compromise the interval validity of a small number
of queries; however, the percentage of valid queries is still close to
99%.

From C = 0.004 to C = 0.02 the algorithm abruptly loses its
ability to fix the damages induced to the overlay by churn; the rate
of joins and leaves is so large that migration does not happen quick
enough to let processes participate correctly to queries. Note that
while in the range from C = 0.004 to C = 0.008 the algorithm is
still able to maintain the overall overlay connectivity, even if inter-
val validity is not preserved, starting from C = 0.008 the overlay
starts to collapse rapidly due to severe partitioning.

Finally, when C is larger than 0.02 the overlay is just a set of
disconnected processes that are no more able to constitute a stable
structure.

4.3 Tests in the variable size scenario
In this test we analyze a population characterized by an vari-

able size in presence of churn. The test consists in (i) reducing
the population size by 50% of its initial size by setting t = 0 (i.e.

OUT-churn rate is n · C) and then (ii) increasing it back to the
initial size by setting t = 1 (i.e. IN-churn rate is n · C). In the
following we will refer to the two settings as descending and as-
cending phases. The purpose of this test is to analyze the algorithm
behaviour during the characteristic size oscillation of many popu-
lar peer-to-peer systems by checking the ability of the system to
provide interval valid queries separately during the descending and
ascending phases.

The duration of both phases is linked to the churn level: the
larger is the churn level and the shorter is the duration of each
phase. More specifically, the duration in roundR of each phase and
the churn rate C are connected by the expression C ·R = 2/3. For
coherence we adopted in this test the same churn levels used in the
constant size scenario. In real peer-to-peer applications fluctuations
in the population size are usually slower than those experimented
in our tests and, moreover, they are usually limited to 20-30% of
the population [6].

It is important to note that during the ascending phase only con-
currency faults can take place because this phase is characterized by
IN-churn only. Conversely, during the descending phase it is possi-
ble to observe both connectivity and concurrency faults; connectiv-
ity faults are the direct consequence of virtual node disconnections
caused by massive amounts of leave operations. However, when
processes detect their disconnection from the overlay they sponta-
neously try to join again the system; this non negligible amount of
concurrent joins can induce concurrency faults.

100101102
70

75

80

85

90

95

100

phase duration (rounds)

pe
rc

en
ta

ge
 o

f i
nt

er
va

l v
al

id
 q

ue
rie

s

descending phase (OUT−churn only)
ascending phase (IN−churn only)

Figure 3: Percentage of interval valid queries versus churn pe-
riod duration in the variable size scenario.

Figure 3 reports the results of this test. The graph show two
curves related to performance observed separately during the de-
scending (continuous line) and the ascending (dashed line) phases.

During the ascending phase the algorithm must only manage join
operations that can induce concurrency faults. As long as the phase
duration is large enough from 1000 to 100 rounds, two subsequent
join operations are separated enough in time in order for the algo-
rithm to avoid concurrency issues; as a consequence all the queries
end with interval valid results. When the phase duration shrinks to
60 rounds concurrency faults kick-in: in this range concurrency is
strong enough to cause some processes to migrate within the over-
lay and consequently affecting running queries. However, if the
the phase duration shrinks below this point we can observe a less
intuitive behaviour: the percentage of interval valid queries raises
up until reaching an asymptotical value; this behaviour is justified
by the fact that by reducing the phase duration we have shorter and
shorter burst of intense churn; when the burst ends the algorithm
employs a certain amount of time to manage the migration of some
of the newly joined processes and this time depends only from the
amount of them; the queries whose results can be negatively af-

fected by these migrations are only those that take place during the
period that starts from the beginning of the phase and that ends
when the last migrating process finally joins a virtual node (with
the exception of the first one due to the definition of the interval va-
lidity property). Therefore, the shorter is the duration of the burst,
the lower will be the total amount of queries that can be affected.
Intuitively, the larger is the churn level, the larger is the probability
to have concurrency faults; however, at the same time, the shorter
is the ascending phase duration, the shorter is the time required to
manage process migrations; it thus better to have large amount of
joins concentrated in short burst instead of moderate IN-churn for
longer time intervals.

Let focus now on the descending phase. When the phase du-
ration is larger than 100 rounds churn is quite limited and the al-
gorithm is able to organize the overlay preserving its connectiv-
ity. When the phase duration shrinks below this point, churn starts
to heavily affect the overlay and the algorithm is no more able to
prevent connectivity faults. Connectivity faults can lead to con-
currency faults due to disconnected processes that try to join again
the overlay; this effect is shown by the discontinuity in the curve
when the phase duration is between 6 and 30 rounds: here we find
again the strange behaviour previously observed in the ascending
phase. However, when the descending phase duration drops below
6 rounds connectivity faults become so intense that in the end the
overlay network becomes completely fragmented and the percent-
age of interval valid queries drops rapidly.

5. RELATED WORK
To the best of our knowledge the first work proposing an ap-

proach based on the usage of virtual nodes in an overlay network
[7] where the Kelips algorithm is introduced; in that work Gupta et
al. suggest an hybrid overlay approach where groups of processes
are interconnected by a structured overlay network; these groups,
formed by possibly large amounts of processes, are maintained by
means of a gossip-based algorithm. Conversely, our algorithms de-
fines groups (virtual nodes) that are maintained as cliques of few
(up to few tens) processes.

More recently the authors of [9] suggested the usage of virtual
nodes in order to enhance the resiliency of a DHT to the churn phe-
nomena; In Overnesia the way virtual nodes are employed is quite
different with respect to our approach: the nodes are constituted
by few processes and each processes cannot move from the virtual
node it has been assigned to. Differently from this approach we
leverage attraction and node migration to keep the system balanced
and ti promptly repair damages caused by churn.

From a general point of view small clusters of tightly connected
processes have been employed to solve widely different problems.
Keidar et al. addressed in [4] employed this approach in the area of
sensors network: the aggregated result of a sensors network could
be biased by few byzantine sensors, but having a cluster of pro-
cesses it is possible to filter out malicious data before computing
aggregates. The authors of [5] and in [10] propose mechanisms
to distribute database functionalities over a peer-to-peer network;
in particular, in [5] Furfaro et al. try to answer historical queries
by leveraging gossip techniques; the authors suggest to use small
cliques responsible specific data pieces in order to preserve the per-
sistency of the data in the network.

6. CONCLUSION
Calculating answers to distributed queries in a dynamic setting

where processes can join or leave the system at their will is a chal-
lenging task as shown in [1]. In this paper we introduced a novel al-

gorithm that supports the execution of distributed queries by main-
taining an overlay network. This overlay is managed and structured
with the main objective of increasing the probability of query re-
sults which are interval validity. This is the first overlay network
at the best of our knowledge instrumented to this specific purpose.
As reported in our experimental study, interval validity can be be
safely assumed to be satisfied with high probability as long as the
churn rate that affect the system is below a threshold. When this
threshold is surpassed, system performance rapidly degrade to a
level where query answers cannot be considered complete. Let us
finally remark that when the churn rate and the churn shape have
a similar behavior than real churn traces (sequence of descending
and ascending phases), our overlay exhibits good performance in
terms of queries returning interval valid results.

7. REFERENCES
[1] Mayank Bawa, Aristides Gionis, Hector Garcia-Molina, and

Rajeev Motwani. The price of validity in dynamic networks.
Journal of Computer and System Sciences, 73(3):245–264,
2007.

[2] Kenneth Birman. Building secure and reliable network
applications. Manning Publications Co., 1997.

[3] Philippe Bonnet, Johannes Gehrke, and Praveen Seshadri.
Towards sensor database systems. In Kian-Lee Tan,
Michael J. Franklin, and John C. S. Lui, editors, Mobile Data
Management, volume 1987 of Lecture Notes in Computer
Science, pages 3–14. Springer, 2001.

[4] Ittay Eyal, Idit Keidar, and Raphael Rom. Distributed
clustering for robust aggregation in large networks. In
HotDep09. IEEE, 2009.

[5] Filippo Furfaro, Giuseppe M. Mazzeo, and Andrea Pugliese.
Managing multi-dimensional historical aggregate data in
unstructured p2p systems. IEEE Transactions on Knowledge
and Data Engineering, 99(PrePrints), 2009.

[6] Saikat Guha, Neil Daswani, and Ravi Jain. An experimental
study of the skype peer-to-peer voip system. In Proceedings
of the 5th International Workshop on Peer-to-Peer Systems
(IPTPS’06), 2006.

[7] Indranil Gupta, Ken Birman, Prakash Linga, Al Demers, and
Robbert van Renesse. Kelips: Building an efficient and stable
p2p dht through increased memory and background
overhead. In Proceedings of the 2nd International Workshop
on Peer-to-Peer Systems (IPTPS ’03), 2003.

[8] Márk Jelasity, Alberto Montresor, and Ozalp Babaoglu. The
bootstrapping service. In Proceedings of the International
Workshop on Dynamic Distributed System (IWDDS)- ICDCS
Workshops, page 11, 2006.

[9] João Leitão and Luís Rodrigues. Overnesia: a resilient
overlay network for virtual super-peers. Technical Report 56,
INESC-ID, December 2008.

[10] Norvald H. Ryeng and Kjetil Nørvåg. Robust aggregation in
peer-to-peer database systems. In IDEAS ’08: Proceedings of
the 2008 international symposium on Database engineering
& applications, pages 29–37, New York, NY, USA,
2008. ACM.

[11] Stefan Saroiu, Krishna P. Gummadi, and Steven D. Gribble.
A measurement study of peer-to-peer file sharing systems. In
Multimedia Computing and Networking (MMCN), January
2002.

[12] S.Rhea, D.Geels, T.Roscoe, and J.Kubiatowicz. Handling
churn in a dht. In Proceedings of the USENIX Annual
Technical Conference (ATEC ’04), pages 10–10, 2004.

